542: UNVEILING ANĀLAKṢHYA: CLOAKING TECHNOLOGY

 

Sputnik News,  a Russian news agency and radio broadcast  service, sought inputs on the Analakshya Project.

 

Article on the subject:-

 

UNVEILING ANĀLAKṢHYA: CLOAKING TECHNOLOGY

 

IIT Kanpur recently unveiled the Anālakṣhya Project, a ground-breaking initiative to advance metamaterial surface cloaking technology. The project, led by IIT Kanpur’s researchers, promises to enhance the strategic capabilities of the Indian defence sector by incorporating advanced technology that can protect vital equipment from detection by radar or other surveillance methods. This innovative project aims to revolutionise defence applications by developing cloaking systems that render objects invisible or significantly reduce their detectability. The Anālakṣhya Project utilises metamaterials—engineered materials with properties not found in naturally occurring substances—to manipulate electromagnetic waves, thus providing new ways to conceal military assets. The Anālakṣhya Project by IIT Kanpur represents a transformative step in India’s defence innovation and positions India at the forefront of next-generation defence systems.

 

Metamaterial Surface Cloaking System (MSCS). The backbone of the Anālakṣhya project is its metamaterials, engineered to manipulate electromagnetic waves, particularly radar signals. A Metamaterial Surface Cloaking System (MSCS) is a technology that uses metamaterials to effectively “cloak” or hide objects by manipulating light or other electromagnetic waves around them. Metamaterials are artificial materials engineered to have properties not found in naturally occurring materials. These properties often include the ability to control the propagation of electromagnetic waves, such as light, in ways that traditional materials cannot. Traditional radars work by emitting radio waves that reflect off objects; however, metamaterials absorb or deflect these waves, significantly reducing the object’s radar cross-section (RCS). This technology is crucial in making fighter jets, naval ships, drones, and military installations undetectable to radar-guided systems, enhancing their survivability in conflict zones.

 

Key features.  The system absorbs radar waves and effectively minimises radar reflections, reducing detection probability. It features adaptive cloaking by dynamically adjusting to different radar frequencies, ensuring comprehensive stealth. Its lightweight and scalable design integrates various platforms, from drones to large platforms (Land, sea and air).

 

Implications for India’s Defence Capabilities. Enhanced Stealth Operations: The Anālakṣhya technology will enhance stealth operations by enabling the covert deployment of high-value military assets. Fighter jets equipped with this system could conduct missions deep into enemy territory without detection, providing a significant tactical edge. Often exposed in open waters, naval ships benefit from reduced detectability, strengthening India’s maritime defence. The ability to operate undetected will give a boost to asymmetric warfare capabilities. It will enhance the missile defence by countering radar-guided threats. The stealth technology would allow surprise manoeuvres, enhancing operational unpredictability, a critical advantage in modern warfare. Fighter aircraft and naval vessels equipped with Anālakṣhya could operate deeper into contested regions without early detection. Integrating Anālakṣhya into multiple platforms will be a force multiplier, allowing fewer assets to achieve a more significant impact. This is particularly beneficial for missions involving long-range reconnaissance, intelligence gathering, and targeted strikes.

 

Anālakṣhya and India’s Defence Standing. Anālakṣhya is a testament to India’s growing emphasis on self-reliance in defence technologies (Atmanirbhar Bharat). India would reduce import dependence by developing Indigenous stealth solutions and strengthening its domestic defence industry. The successful deployment of this technology would open avenues for India to emerge as an exporter of stealth technologies. Countries seeking advanced, cost-effective, radar-evasive solutions may consider India a viable partner. India’s cutting-edge technology development would enhance its geopolitical influence, making it an attractive partner for defence collaborations.

 

Challenges and Future Prospects. Adapting Anālakṣhya to various military platforms, from fighter jets to maritime and land-based platforms, requires overcoming engineering and logistical challenges. Ensuring seamless integration while maintaining operational efficiency will be a crucial focus. Along with stealth technologies, counter-radar detection systems would also evolve. Continuous research and development will be essential to stay ahead of emerging threats. The future of Anālakṣhya lies in its synergy with AI-driven systems, allowing real-time adjustments to stealth parameters based on changing battlefield conditions. This integration will make India’s military platforms more adaptive and autonomous.

 

Conclusion. The Anālakṣhya Project represents a landmark achievement for India, showcasing the country’s capability to develop state-of-the-art defence technologies. By enhancing stealth capabilities and reducing the vulnerability of critical assets, Anālakṣhya fortifies India’s national security and elevates its standing in the global defence arena. As the technology matures, it will serve as a cornerstone for India’s future military strategies, reinforcing its role as a defence innovator and strategic power in the evolving global landscape.

 

Inputs:-

(The views expressed are of the Individual, not IAF or GOI).

    • The Anālakṣhya project, developed by IIT Kanpur, strengthens India’s defence against radar-guided missile threats by employing a Met material Surface Cloaking System (MSCS).
    • This advanced technology uses engineered materials to absorb and deflect radar waves, making military assets such as drones, aircraft, and missiles nearly undetectable.
    • By reducing radar cross-sections, Anālakṣhya enhances stealth capabilities, which is crucial for evading radar-based targeting and improving survivability in hostile environments.
    • This innovation offers India a strategic advantage in modern warfare scenarios involving electronic and radar-guided threats.
    • The deployment of Anālakṣhya will significantly enhance India’s defence capabilities by providing stealth protection for high-value assets like fighter jets, naval ships, and military installations.
    • This cloaking technology will make these assets nearly invisible to enemy radar systems, reducing the effectiveness of radar-guided missiles and improving survivability in conflict zones.
    • In military tactics and operational planning, Anālakṣhya will allow for the covert deployment of assets, surprise manoeuvres, and more resilient defensive postures.
    • It will also support asymmetric warfare by making Indian forces less detectable, thus enhancing strategic deterrence and operational flexibility.​
    • The Anālakṣhya project positions India as a key innovator in the global defence landscape by advancing stealth and radar-evasive technologies.
    • Its deployment signals India’s shift towards next-generation military capabilities, aligning with global leaders in defence innovation like the U.S., China, and Russia.
    • This enhances India’s strategic deterrence, boosts its Indigenous defence manufacturing capacity, and strengthens its standing in defence exports and partnerships.
    • Moreover, Anālakṣhya’s integration with AI and autonomous systems highlights India’s growing role in cutting-edge military research and self-reliance in defence technologies (Atmanirbhar Bharat).

 

Your valuable comments are most welcome.

 

761
Default rating

Please give a thumbs up if you  like The Post?

 

For regular updates, please register your email here:-

Subscribe

 

 

References and credits

To all the online sites and channels.

References:-

 

  1. IIT Kanpur Official Website. Anālakṣhya Project Announcement. IIT Kanpur Press Release.

 

  1. “IIT Kanpur Develops Metamaterial-Based Cloaking Technology”. The Economic Times.

 

  1. “IIT Kanpur’s Anālakṣhya: The Next Frontier in Defense Cloaking Technology”. India Today.

 

  1. “The Science of Cloaking: How Metamaterials Are Changing the Future of Defense”. Science Daily.

 

  1. “Defense Innovation: Metamaterials and Cloaking”. Ministry of Defense, India.

 

  1. The Future of Metamaterials: Cloaking and Beyond. (2024). IEEE Spectrum.

 

  1. Shalaev, V. M. (2007). Optical Negative Refraction: From Metamaterials to Metadevices. Journal of Optics A: Pure and Applied Optics, 9(4), S8.

 

  1. Zhang, S., & Zhang, L. (2014). Metamaterials for Cloaking and Beyond. Springer.

 

  1. Hussein, H. H., & El-Sayed, M. A. (2021). Recent Advances in Metamaterial-Based Cloaking Technology. Journal of Electromagnetic Waves and Applications, 35(10), 1251–1272.

 

Disclaimer:

Information and data included in the blog are for educational & non-commercial purposes only and have been carefully adapted, excerpted, or edited from reliable and accurate sources. All copyrighted material belongs to respective owners and is provided only for wider dissemination.

 

 

539: RUSSIA’S WHITE SWAN BOMBER: GAME-CHANGER OR WHITE ELEPHANT FOR INDIA

 

Pic Courtesy Net

 

My article published on the EurAsian Times Website on 26 Nov 24.

 

To strengthen bilateral defence cooperation, Russia has offered India the opportunity to procure the Tu-160M strategic bombers, known as the “White Swan.” This move, reflecting Moscow’s ongoing ambition to bolster military ties with its long-standing partner, could provide India with substantial aerial capabilities. As India considers this offer, questions arise regarding its practicality, implications for regional security, strategic deterrence, and the broader Indo-Russian defence relationship.

 

Background and Features.  The Tupolev Tu-160, developed initially in the Soviet Union during the late 1970s, is the world’s most oversized and fastest supersonic bomber. The modernised variant, the Tu-160M, incorporates significant upgrades over its predecessor. Equipped with advanced avionics, enhanced navigation systems, and state-of-the-art NK-32-02 engines, the Tu-160M is designed to improve operational efficiency and extend mission capabilities. Each aircraft is capable of carrying up to 12 long-range cruise or nuclear missiles, enabling precision strikes far from home bases. With a remarkable range of 12,000 km without refuelling and variable-sweep wings allowing flexible mission adaptation, the Tu-160M maintains supremacy as a long-distance strategic bomber.​ The model’s design allows for high-speed, low-altitude flight and quick acceleration, granting it a unique operational profile suitable for conventional and strategic missions.

 

Geopolitical Aspects. The offer of the Tu-160M aligns with Russia’s goal of deepening defence ties with India amid shifting global alliances. India and Russia have historically shared a strong defence partnership, which has marked extensive arms sales and technology transfers. This relationship has weathered challenges posed by India’s increasing engagements with Western powers, notably the U.S., for defence technology. Accepting Russia’s offer could reaffirm this bilateral relationship, counterbalancing Western influence while ensuring India maintains diverse sources for its defence procurement. This diversification reduces reliance on any single country and allows India to navigate its complex strategic environment more flexibly.​ Additionally, the offer comes as Russia seeks to assert its position in global arms markets amid sanctions and the fallout from geopolitical conflicts. By selling advanced military equipment like the Tu-160M, Moscow reinforces its image as a provider of cutting-edge technology to key partners.

 

Multi-Role Fighters Vis-a-Vis Strategic Bomber. Historically, the Indian Air Force has favoured multirole fighters over a dedicated strategic bomber. The potential acquisition of the Tu-160M would significantly shift India’s defence posture. This addition would enhance India’s capability to project power across the Indo-Pacific region and serve as a formidable deterrent amid evolving regional threats. Presently, India relies on fighters like the Sukhoi Su-30MKI and Dassault Rafale for long-range strikes. These aircraft, while versatile, do not match the range and payload of the Tu-160M, which can carry nuclear-capable Kh-101 and Kh-102 cruise missiles.

 

Pic Courtesy Net

 

Capability Enhancement. The Indo-Pacific is witnessing an intensification of geopolitical rivalries, particularly with the rise of China’s military capabilities and assertive stance in territorial disputes. For India, a strategic bomber like the Tu-160M could provide enhanced reach, allowing it to strike deep into adversarial territories or support extended deterrence strategies. This would complement India’s existing nuclear triad, comprising land-based missiles, submarines, and fighter-borne atomic weapons.​

 

Regional Balance. Strategic bombers could alter the military balance regionally, compelling neighbouring states to recalibrate their security strategies. For instance, though formidable, China’s fleet of H-6 bombers lacks the same speed and range as the Tu-160M. Thus, India’s acquisition could establish a new tier of deterrence, countering strategic depth advantages that adversaries maintain.​

 

Cost Factor. Despite the potential benefits, the Tu-160M’s high price tag poses significant budgetary implications. The need for specialised training, new infrastructure, and extensive maintenance compounds high acquisition costs. Given its size and operational demands, the IAF would have to consider adapting airbases and logistical support systems to operate and sustain such an aircraft.​

 

Doctrinal Challenges. The bomber’s survivability in contested airspace that India is likely to face is another issue for consideration. Furthermore, integrating the strategic bomber into IAF operations would require significant investments in pilot training programs and mission planning resources to optimise its use. Training specialised crews and adopting new operational doctrines may also present a challenge, as India’s air force has historically not fielded heavy bombers.

 

Place in Priority List. Currently, the Tupolev Tu-160 may not occupy a high priority in the Indian Air Force’s defence acquisition plans. India focuses primarily on enhancing its missile defence, air superiority fighters, and long-range strike capabilities through multi-role aircraft and cruise missiles. The Tu-160, while a potent strategic asset, may not align with India’s current needs due to the high cost of acquisition and maintenance and the presence of alternative means of strategic deterrence. However, its role in a long-term strategic vision could be revisited if future developments necessitate it.

 

The potential acquisition of the Tu-160M bomber presents India with a pivotal opportunity to enhance its strategic capabilities and solidify its position as a regional power. While the benefits of range, payload, and deterrence are substantial, India must consider the broader implications, including costs, logistics, and geopolitical messaging. If India integrates the Tu-160M into its air force, it will signify a significant milestone in its defence modernisation. This decision would reinforce its strategic deterrence and strengthen Indo-Russian ties at a time when global power dynamics are in flux. India However, acquiring such a platform involves more than financial investment. India must weigh the strategic benefits against operational challenges, including the bomber’s relevance in modern warfare, which increasingly favours multi-domain and network-centric approaches over traditional heavy bombardment. Ultimately, the choice will reflect India’s long-term vision for its role in the regional and global security landscape.​

 

Your valuable comments are most welcome.

 

761
Default rating

Please give a thumbs up if you  like The Post?

 

For regular updates, please register your email here:-

Subscribe

 

 

References and credits

To all the online sites and channels.

 

Disclaimer:

Information and data included in the blog are for educational & non-commercial purposes only and have been carefully adapted, excerpted, or edited from reliable and accurate sources. All copyrighted material belongs to respective owners and is provided only for wider dissemination.

 

538:CHINA UNVEILS LYNX ROBOT: BROADER SHIFT TOWARDS UNMANNED WARFARE

Pic Courtesy: Net

 

My Article published on The EurAsian Times Website on 24 Nov 24

 

The Chinese company Deep Robotics recently unveiled the “Lynx ” advanced quadruped robot.” This robot is designed for rugged, off-road environments and showcases its versatility by navigating extreme terrain and performing stunts like backflips and sharp turns. The robot’s robust design allows it to move at high speeds across rugged landscapes, enhancing its utility in real-world applications like disaster response and exploration.​ The robot represents a significant move in China’s broader strategy of embracing unmanned warfare.

 

Lynx Robot

 

Pic Courtesy: Net

 

Deep Robotics, founded in 2017, has made a name for itself with its innovative quadruped robots, and the Lynx represents a leap forward in terms of versatility and performance. The Lynx has all-terrain wheels, allowing it to cover uneven ground easily. Thanks to its waterproof design, it can operate in challenging conditions, including temperatures ranging from -20°C to 55°C, and in wet environments. The Lynx can autonomously navigate challenging environments for up to 4 hours on a single charge. This robot has garnered attention for its practical applications in search and rescue, mapping, inspection, and potential military uses.

 

Possible Military application.

 

The Lynx robot by Deep Robotics, with its rugged capabilities, mobility, and autonomous navigation of extreme terrains, presents several potential military applications. These features make it suitable for a range of tactical and logistical operations in military contexts, from reconnaissance missions in complex environments to providing logistical support in combat zones.

 

Reconnaissance and Surveillance. The Lynx’s ability to traverse complex environments—such as rough, mountainous terrain or urban rubble—makes it ideal for reconnaissance missions. Its autonomous navigation capabilities allow it to gather intelligence in areas that are too dangerous or difficult for human soldiers to access, providing real-time data without risking lives​.

 

Logistical Support. The robot’s capacity to carry heavy loads and its off-road agility make it a potential asset in logistical operations, particularly in combat zones. It could transport supplies, ammunition, and equipment across uneven terrain, ensuring that military units are well-supplied in challenging environments.​

 

Search and Rescue Operations. Given its versatility and ability to function in extreme conditions, the Lynx could be used in military search and rescue operations. It can be deployed in environments where traditional vehicles may struggle, such as collapsed buildings or hazardous zones after combat.​

 

Explosive Ordnance Disposal (EOD). The robot’s agility, ability to handle rough terrain, and precision could make it a valuable tool in EOD operations. It would allow military personnel to remotely detect and disarm explosives in hostile areas without exposing humans to danger.

 

The Lynx’s robust design and all-terrain features lend it to military applications. As with many advanced robotic systems, its military potential could be seen as a means to reduce human casualties and enhance combat capabilities.

 

Future Warfare with Unmanned Systems

 

Unmanned systems, encompassing unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs), are rapidly transforming the landscape of modern warfare. With technological advancements, these systems have moved from the periphery of military operations to the forefront, providing unprecedented surveillance, reconnaissance, logistics, and combat capabilities. This article explores the tactical applications of unmanned systems in future warfare, illustrated with examples, insights from military experts, and a look at the implications for global security.

 

The Evolution of Unmanned Systems. The concept of unmanned systems is not new; however, their application has dramatically evolved over the past two decades. Initially utilised primarily for reconnaissance missions during the Cold War, UAVs gained prominence in the 1990s and early 2000s, particularly in the U.S. military’s operations in the Middle East. The 2001 invasion of Afghanistan and the subsequent Iraq War marked a turning point where UAVs like the MQ-1 Predator and MQ-9 Reaper became integral to combat operations, enabling real-time intelligence gathering and targeted strikes without risking pilot lives. A 2021 U.S. Defence Innovation Board report states, “Unmanned systems are reshaping how wars are fought, enabling forces to conduct operations with greater precision, efficiency, and reduced risk to personnel” (Defence Innovation Board, 2021).

 

Tactical Applications of Unmanned Aerial Vehicles (UAVs)

 

Surveillance and Reconnaissance. One of the primary applications of UAVs is for surveillance and reconnaissance missions. The ability to gather intelligence over vast areas without risking human life is invaluable. For example, during the 2012 conflict in Mali, French forces employed UAVs to monitor enemy movements and gather intelligence on insurgent groups. This enabled precise ground operations planning, significantly improving their forces’ effectiveness.

 

Precision Strikes. UAVs have also become crucial in delivering precision strikes against high-value targets. The use of drones for targeted killings has been a controversial yet effective tactic. Israel’s use of UAVs in conflicts, such as the 2006 Lebanon War, demonstrated the effectiveness of drones in both surveillance and combat roles. The Israeli Air Force’s use of the Heron and Hermes UAVs allowed for persistent monitoring and targeted strikes, significantly impacting Hezbollah’s capabilities.

 

Logistics and Resupply. Unmanned systems are also revolutionising military logistics. The U.S. Army has begun to deploy UAVs for logistical support, delivering supplies to frontline troops.  This capability was notably highlighted during the 2020 Nagorno-Karabakh conflict, where Azerbaijani forces utilised UAVs not only for combat but also for logistical operations, effectively resupplying troops in the field while minimising the risk of ground convoys being attacked.

 

Tactical Applications of Unmanned Ground Vehicles (UGVs)

 

Combat Support and Logistics Unmanned ground vehicles (UGVs) are increasingly integrated into combat operations. These systems can perform various tasks, including surveillance, logistics, and direct enemy forces engagement. The U.S. Army’s Robotic Combat Vehicle (RCV) program exemplifies this trend, as it aims to develop UGVs that can operate alongside manned units to enhance combat effectiveness. The UGVs deployed in recent military exercises have demonstrated their ability to scout ahead of troop formations, providing critical intelligence without endangering soldiers.

 

Counter-Improvised Explosive Device (C-IED) Operations. UGVs are particularly effective in counter-IED operations, where they can safely detect and disarm explosive devices. The U.S. military has employed systems like the PackBot and Talon, successfully reducing casualties among dismounted troops. During operations in Afghanistan, UGVs were instrumental in clearing routes for ground convoys by detecting and neutralising IED threats.

 

Humanitarian Assistance and Disaster Relief (HADR). UGVs are also involved in humanitarian assistance and disaster relief operations. In the aftermath of natural disasters, these vehicles can be deployed to assess damage, locate survivors, and deliver supplies. For instance, after the 2011 earthquake and tsunami in Japan, UGVs were used to navigate debris and assess the condition of affected areas, demonstrating their versatility beyond traditional military applications.

 

Future Warfare and the Role of Unmanned Systems.

 

As warfare continues to evolve, the role of unmanned systems will only expand. Integrating artificial intelligence (AI) and machine learning into unmanned systems will enhance their capabilities, enabling them to operate autonomously in complex environments. This shift toward autonomy presents both opportunities and challenges for military planners.

 

Enhanced Decision-Making. Integrating AI into unmanned systems will facilitate improved decision-making in combat scenarios. AI algorithms can analyse vast amounts of data from multiple sources, providing commanders with actionable intelligence and recommendations for operations. The future battlefield will be defined by speed and the ability to process information faster than the enemy.

 

Ethical Considerations. However, the increasing reliance on unmanned systems raises significant ethical questions. The use of drones for targeted killings has sparked debate over accountability and the rules of engagement. As military operations become more automated, the question of human oversight becomes critical. Experts argue that while unmanned systems can enhance operational efficiency, they must be governed by strict ethical guidelines to prevent misuse and collateral damage.

 

Global Security Implications. The proliferation of unmanned systems is reshaping global security dynamics. As countries like China and Russia invest heavily in their drone capabilities, the balance of power is shifting. The use of UAVs in conflicts such as the Syrian Civil War and the ongoing tensions in the South China Sea highlights the strategic importance of these systems in contemporary military strategies.

 

China’s Investment in Unmanned Systems

 

China has heavily invested in unmanned systems as part of its broader goal to modernise its military and lead in technological innovation. These investments are spread across several key sectors, including unmanned aerial vehicles (UAVs), unmanned underwater vehicles (UUVs), and unmanned surface vessels (USVs). These technologies have military, commercial, and strategic implications that extend beyond China’s borders.

Unmanned Aerial Vehicles (UAVs). China is a global leader in UAV technology, mainly through the success of companies like DJI. DJI dominates the global drone market, controlling up to 70% of the worldwide share. China’s military has also developed advanced UAVs, including surveillance, reconnaissance, and strike capabilities. The Wing Loong series, for example, is a family of Chinese UAVs designed for intelligence gathering and targeted strikes. These UAVs are being developed for domestic consumption and export purposes, making China a significant player in the global defence drone market.

 

Unmanned Surface Vessels (USVs). China is making significant strides in developing USVs, which are used for maritime surveillance, reconnaissance, and mine detection. These unmanned vessels are seen as cost-effective alternatives to manned naval operations, offering the ability to patrol contested waters like the South China Sea without risking human life. USVs also help maintain a constant presence in strategic maritime regions. These vessels align with China’s broader naval ambitions to assert its presence and power projection capabilities in the Indo-Pacific.​

Unmanned Underwater Vehicles (UUVs). China’s investment in UUVs has been critical to its maritime strategy, particularly in the South China Sea and other key waterway areas. These vehicles are essential for underwater surveillance, anti-submarine warfare, and potentially offensive operations against rival naval forces. China’s UUV technology has evolved to encompass various capabilities, from scientific exploration to military applications, such as the Haisi underwater vehicle series.​

 

Strategic and Military Applications. China’s investments are strategically aimed at bolstering its military capabilities, enhancing its surveillance capabilities, and reducing operational risks. By focusing on unmanned systems, China can maintain a technological edge in surveillance, reconnaissance, and potential combat operations. The country’s Military-Civil Fusion policy further accelerates the integration of civilian technological advances into the military, making these unmanned systems even more pivotal for national defence and global influence.​

 

Global Influence and Export Strategies. China’s dominance in the unmanned systems market has implications for its foreign policy and international influence. While Western countries like the U.S. have stricter export controls on unmanned systems, China’s more flexible approach allows it to export these technologies widely, especially to developing countries. This has led to China’s increasing presence in markets previously dominated by Western companies, positioning it as a critical player in the global defence and technology sectors.

 

China’s strategic investments in unmanned systems are part of a broader national ambition to lead in defence technology while reducing reliance on traditional military platforms. The country’s dominance in the drone market and advancements in USVs and UUVs make unmanned systems a cornerstone of China’s military modernisation efforts and broader geopolitical ambitions. These investments strengthen China’s defence capabilities and enhance its influence across global markets, particularly in rising geopolitical tensions in the Indo-Pacific and other strategic regions.

 

The increasing use of unmanned systems by state and non-state actors presents a new paradigm in warfare, challenging traditional military doctrines and necessitating a re-evaluation of defence strategies. As nations continue to develop and deploy unmanned systems, it is imperative to strike a balance between leveraging their capabilities and ensuring accountability in their use. These technologies will undoubtedly shape the future of warfare, making it essential for military leaders and policymakers to understand their implications for global security.

 

Your valuable inputs are most welcome.

761
Default rating

Please give a thumbs up if you  like The Post?

 

For regular updates, please register your email here:-

Subscribe

 

 

References and credits

To all the online sites and channels.

References:

  1. Aviation Week Network. (2019). UAVs in Mali: The Role of Drones in Modern Warfare. aviationweek.com.
  2. Center for Strategic and International Studies (CSIS). (2020). The Future of Unmanned Systems in Global Security. csis.org
  3. Cohen, R. (2021). Logistical Innovations in Warfare: Lessons from the Nagorno-Karabakh Conflict. Military Review.
  4. Defence Innovation Board. (2021). The Future of Warfare: Unmanned Systems and Autonomous Operations. defenseinnovationboard.gov
  5. Dunford, J. (2016). Counter-IED Operations: Lessons Learned from Afghanistan. Joint Force Quarterly.
  6. McGhee, J. (2018). The Evolution of Unmanned Aerial Systems in Combat. Air Force Journal.
  7. McRaven, W. A. (2020). The Role of Robotics in Modern Warfare. Military Affairs.
  8. Shay, S. (2019). Drones in Israel’s Military Strategy: A Case Study. Journal of Military Strategy.
  9. Singer, P. W. (2019). Ethics of Drone Warfare: A Contemporary Debate. Ethics & International Affairs.
  10. Walker, W. J. (2022). Artificial Intelligence and the Future of Warfare. Army Command and General Staff College.
  11. Yasuda, T. (2012). The Role of Unmanned Systems in Disaster Response: Case Study of Japan. Disaster Management Journal.

Disclaimer:

Information and data included in the blog are for educational & non-commercial purposes only and have been carefully adapted, excerpted, or edited from reliable and accurate sources. All copyrighted material belongs to respective owners and is provided only for wider dissemination.