675: AMCA PROGRAMME EXECUTION MODEL: A NEW ERA FOR INDIA’S DEFENCE PRODUCTION

 

My Article published on the EurasianTimes website on 01 Jun 25.

 

India’s quest for self-reliance in defence technology has reached a pivotal milestone with the approval of the Advanced Medium Combat Aircraft (AMCA) Programme Execution Model on May 26, 2025. This model, greenlit by Defence Minister Rajnath Singh, introduces a collaborative and competitive framework to accelerate the development of India’s first indigenous fifth-generation stealth fighter jet. Designed by the Aeronautical Development Agency (ADA) under the Ministry of Defence, the AMCA is a 25-tonne, twin-engine, multirole stealth aircraft intended to bolster the Indian airpower capabilities by 2035. The new execution model emphasises private sector involvement, international collaboration, and a competitive bidding process, significantly departing from traditional defence procurement practices.

 

Advanced Medium Combat Aircraft. AMCA is India’s fifth-generation stealth fighter jet program, developed by the Aeronautical Development Agency (ADA) under the Defence Research and Development Organisation (DRDO). Designed as a multirole, twin-engine aircraft, the AMCA aims to replace ageing fleets such as the SEPECAT Jaguar and Mirage 2000, while complementing the Rafale and future Tejas Mk2 in the Indian Air Force (IAF). The 25-tonne, twin-engine AMCA features stealth shaping, internal weapons bays, and advanced sensor fusion. It is intended to excel in air superiority, deep strike, and electronic warfare missions. It will have an advanced avionics suite, Indigenous AESA radar, and potentially AI-based mission systems. The aircraft is envisioned in two phases: Mark 1 with current-generation technologies and imported engines, and Mark 2 incorporating Indigenous sixth-generation features and an Indian powerplant. The AMCA is strategically significant as it will enhance India’s air combat capabilities and reduce reliance on foreign platforms.

Strategic Significance of AMCA. The AMCA is not just a defence project but a strategic lever and India’s entry ticket into the elite club of fifth-generation fighter operators. The AMCA program is critical to countering regional threats, particularly from China and Pakistan. China’s deployment of J-20 and J-35 stealth fighters, with plans to supply 40 J-35s to Pakistan, underscores the urgency of AMCA’s development. The IAF’s modernisation drive, aiming for 42 squadrons by 2035, relies on the AMCA to maintain a technological edge. The collaborative model’s success could position India among the elite nations with fifth-generation fighters, alongside the US, China, and Russia.

 

Historical Progress: Bottlenecks. The AMCA program was conceived in the early 2010s as a follow-on to the Light Combat Aircraft (LCA) Tejas. However, despite its strategic importance, progress was tepid due to multiple challenges. Initial timelines projected a first flight by 2020 and production by 2025, but these slipped to 2028 and 2038-39 due to funding constraints and bureaucratic delays. The program’s preliminary design phase began in 2015, with CCS approval only in 2024. The Tejas program’s prolonged development (from the 1980s to the late 2010s) is a cautionary tale, highlighting systemic issues in India’s defence ecosystem. The program lacked an empowered governance structure, slow decision-making, and HAL’s overburdened capacity. The absence of an indigenous high-thrust engine has been a persistent hurdle for the program; the Kaveri engine program’s inability to meet requirements forced reliance on foreign engines, delaying self-reliance. India lacked expertise in advanced technologies and high-thrust engines, necessitating foreign collaboration. The withdrawal from the Indo-Russian FGFA project in 2018 due to disagreements over technology transfer forced a fully indigenous approach, increasing technical risks. The new execution model addresses many of these issues by decentralising authority, attracting capital, and professionalising development.

 

Boosting the AMCA Program

Collaborative Execution Model. Announced on May 26, 2025, the AMCA Programme Execution Model introduces a public-private partnership (PPP) framework, moving away from the traditional reliance on Hindustan Aeronautics Limited (HAL) as the sole manufacturer. The new model proposes a Special Purpose Vehicle (SPV)-based framework, with a private sector partner who will work alongside the Aeronautical Development Agency (ADA), Hindustan Aeronautics Limited (HAL), and the Indian Air Force (IAF).  Under this model, the ADA will issue an Expression of Interest (EoI) to public and private entities, allowing them to bid independently or as consortia. The model offers flexibility to include global OEMs as technology partners or equity stakeholders in the SPV. This shift signifies a bold experiment breaking free from India’s traditionally state-dominated defence production ecosystem. It promises to enhance project accountability, bring commercial rigour to execution, and facilitate foreign direct investment and technology infusion. The competitive approach aims to streamline development, reduce costs, and integrate cutting-edge technologies. One of the most progressive steps is to move from a nomination-based to a competitive merit-based selection model. The collaborative model is expected to provide several key benefits to the AMCA program.

Encouraging Efficiency and Speed.  By involving private sector firms alongside HAL, the model diversifies the production base, reducing bottlenecks associated with a single manufacturer. Private companies would bring agility, innovation, and financial muscle, which can accelerate manufacturing and delivery timelines. The Ministry of Defence (MoD) has emphasised reducing timelines. Firms will be incentivised to optimise costs and timelines to win bids, reducing the bureaucratic delays that plagued earlier phases of the AMCA program. The Combined Quality Cum Cost Based System (CQCCBS) model will evaluate bids based on technical and financial merits, ensuring high-quality outcomes.

Technology Integration. Including private firms would enable access to advanced manufacturing techniques and expertise in composites, avionics, and AI. The collaboration is expected to enhance the AMCA’s technological edge, aligning it with global fifth-generation standards.

Economic and Industrial Growth. The model would foster a robust domestic aerospace ecosystem, generating employment and technological advancements. By distributing work packages among private firms, the program stimulates investment in infrastructure and skilled workforce development, aligning with India’s “Atmanirbhar Bharat” vision for self-reliance.

Risk Mitigation. The collaborative approach spreads financial and technical risks across multiple stakeholders, reducing the burden on HAL and the government. This is particularly crucial given the program’s history of delays and funding shortages.

 

Technological Challenges

However, challenges remain. Establishing fighter jet manufacturing facilities requires significant investment, and private firms may face hurdles in acquiring land, infrastructure, and skilled labour. Scepticism persists about their ability to match HAL’s experience, which could lead to initial teething issues. The AMCA’s development involves overcoming significant technological hurdles, particularly in stealth and engine capabilities.

Stealth Technology. Achieving a low radar cross-section (RCS) is critical for the AMCA’s fifth-generation credentials. The AMCA incorporates a twin-tail layout, platform edge alignment, and diverterless supersonic inlet (DSI) with serpentine ducts to conceal engine fan blades. However, refining radar deflection capabilities is essential. India is developing RAM to reduce RCS, with IIT Kanpur’s Anālakṣhya Meta-material Surface Cloaking System (MSCS) enhancing stealth against Synthetic Aperture Radar (SAR). Scaling this technology for industrial production remains a challenge. Stealth design compromises aerodynamics, reducing manoeuvrability. Balancing these aspects requires advanced computational modelling and wind-tunnel testing.

Engine Capabilities. The AMCA’s supercruise and thrust vectoring requirements demand a high-thrust engine, posing significant challenges. India’s lack of indigenous jet engine technology remains a bottleneck. Achieving sustained supersonic flight without afterburners and enabling thrust vectoring for enhanced manoeuvrability requires advanced engine designs. Integrating these systems into the AMCA’s airframe is technically demanding. The Kaveri engine project highlighted the gaps in materials science and manufacturing precision, necessitating foreign expertise.

 

International Collaboration

The AMCA program’s success hinges on robust private sector and international partners participation. Opening the doors to foreign OEMs and global collaboration is a key differentiator of the new model. Foreign OEMs from Russia, France, the UK, and the US are expected to play a crucial role, particularly in addressing technological gaps. Several roles are envisioned for global partners.

Collaborations ensure technology transfer, critical for building India’s aerospace capabilities. Technology transfer is expected, particularly for stealth shaping, radar-absorbing materials (RAM), advanced avionics, and sensors. Foreign partners can provide expertise in radar-absorbing materials, low-observable designs, and AESA radar systems. The US, with its F-35 program, and Russia, with the Su-57, offer valuable insights, though India’s withdrawal from the Indo-Russian FGFA project in 2018 underscores its focus on indigenous control.

India lacks an indigenous jet engine for the project. The AMCA Mk-1 will use GE Aerospace F414 engines (98 kN), while the Mk-2 requires a 110-120 kN engine. France’s Safran is in advanced talks for co-development, leveraging offset obligations from the Rafale deal. Rolls-Royce has offered to co-design and co-develop, allowing India to retain IP rights. Russia’s expertise in thrust vectoring and the US’s advanced engine technologies are also under consideration. Collaboration with GE (U.S.), Safran (France), or Rolls-Royce (UK) is vital.

 

Implications for HAL: From Monopoly to Competition

HAL, long seen as India’s defence aviation behemoth, now faces a significant paradigm shift. While HAL will remain a stakeholder in the AMCA program, it will no longer enjoy uncontested leadership. Its role is expected to evolve from sole integrator to collaborator, contributing expertise in production, system integration, and testing infrastructure. This transformation could prove beneficial if HAL adapts proactively.  However, the threat of being sidelined if it fails to remain competitive could motivate internal reforms, increase efficiency, and push HAL toward greater innovation and collaboration. Including foreign OEMs and private firms in the AMCA program will have profound implications for HAL.

 

Shift from Monopoly to Competition. HAL’s role as the default manufacturer is no longer guaranteed. It must now bid alongside private giants, which could challenge its dominance but also push it to improve efficiency and innovation.

Technology Transfer Opportunities. Collaboration with foreign OEMs like Safran (France) and Rolls-Royce (UK) for engine development offers HAL access to advanced technologies. However, HAL must navigate intellectual property (IP) agreements to ensure India retains significant control.

 Capacity Constraints. HAL’s current workload strains its resources, including 180 Tejas Mk-1A aircraft and four Tejas Mk-2 prototypes. The competitive model would allow HAL to focus on core competencies like final assembly while outsourcing subassemblies to private firms, potentially alleviating pressure.

 

Challenges Ahead

While the execution model marks a shift, several hurdles remain.

    • SPV Selection & Governance. Choosing the right private partner with financial depth, technical competence, and political neutrality is critical.
    • IP Ownership. Managing intellectual property rights, especially with foreign OEMs, will require legal finesse.
    • Funding Certainty. The AMCA requires an estimated ₹15,000–20,000 crore for development. Ensuring uninterrupted funding from all stakeholders will be vital.
    • Workforce & Skill Gaps. India’s aerospace talent pool must scale up to meet the design, integration, and production demands.
    • Export Potential. Safeguards and foreign collaboration agreements should not hinder India from exporting the platform to friendly nations.

 

Conclusion

The announcement of a collaborative execution model for AMCA on 26 May 2025 could be the inflexion point the program needed. The model addresses historical delays and technological gaps by fostering competition, involving private firms, and leveraging international expertise. While HAL’s role remains pivotal, shifting toward a diversified production base could redefine India’s defence manufacturing landscape. For a nation striving for strategic autonomy, technological self-reliance, and regional superiority, the success of the AMCA is non-negotiable. However, its execution depends on how well India can manage the complex dynamics of competition, collaboration, and capability development. If the SPV model succeeds, it could become the blueprint for all future high-tech defence platforms in India—from UAVs to next-gen submarines.

 

Please Add Value to the write-up with your views on the subject.

 

1295
Default rating

Please give a thumbs up if you  like The Post?

 

For regular updates, please register your email here:-

Subscribe

 

 

References and credits

To all the online sites and channels.

Pics Courtesy: Internet

Disclaimer:

Information and data included in the blog are for educational & non-commercial purposes only and have been carefully adapted, excerpted, or edited from reliable and accurate sources. All copyrighted material belongs to respective owners and is provided only for wider dissemination.

 

 

References:-

  1. Ministry of Defence, Government of India. Press Release: “Collaborative Execution Model for AMCA Programme Announced”, 26 May 2025.
  1. Aeronautical Development Agency (ADA). Overview of the Advanced Medium Combat Aircraft (AMCA) Programme.
  1. Pubby, Manu. “India’s AMCA fighter jet project to get private sector partner.” The Economic Times, May 2025.
  1. Unnithan, Sandeep. “How AMCA Will Shape India’s Future Air Power.” India Today Defence, April 2025.
  2. Raju, R. “Challenges in India’s Military Jet Engine Development.” ORF Occasional Paper No. 404, Observer Research Foundation, 2024.
  3. Joshi, Manoj. “India’s Quest for Strategic Autonomy through Defence Indigenisation.” Centre for Policy Research, 2023.
  4. DRDO Annual Report 2023–24. Chapter on Aeronautics R&D and Indigenous Fighter Programs.
  1. GlobalSecurity.org. “AMCA – Advanced Medium Combat Aircraft (India).”
  1. FlightGlobal. “India Eyes Foreign Partners for AMCA Jet Engine Collaboration.” March 2024.
  1. Vivek, Raghuvanshi. “India’s AMCA Jet to Fly with GE Engine Initially, Indigenous Powerplant Planned Later.” Defence News, July 2024.
  2. Roy, Shubhajit. “France’s Safran Proposes Joint Development of Jet Engine for India’s AMCA.” The Indian Express, January 2024.
  3. Singh, Abhijit Iyer-Mitra. “Fifth-Generation Fighter Development: Why India Needs to Rethink.” VIF Brief, Vivekananda International Foundation, 2023.

635: IAF’S WINGS OF INDIGENISATION: THE IAF-HAL SAGA

 

My Article was published in the Life of Soldier Journal on April 25.

 

Hindustan Aeronautics Limited (HAL) has been in the spotlight for its recent achievements and challenges. The company has secured significant defence contracts, including a deal for LCA Tejas Mk1A fighter jets and a substantial agreement for Indigenous helicopters. HAL has also made strides in the Advanced Medium Combat Aircraft (AMCA) program, enhancing India’s aerospace capabilities. However, the company has faced scrutiny over production delays and concerns raised by the Indian Air Force regarding aircraft availability.

 

The Indian Air Force (IAF) has been a stalwart in the pursuit of indigenisation, a strategic move to reduce dependence on foreign suppliers and bolster national security. Key initiatives include the induction of HAL’s Tejas fighter jets, the Advanced Medium Combat Aircraft (AMCA) development, and the procurement of indigenous helicopters like the Light Combat Helicopter (LCH) Prachand. The IAF’s investments in indigenous UAVs, radars, and advanced weapon systems are a testament to its commitment to enhancing self-reliance. While challenges persist, a collaborative effort between the IAF, HAL, and private industry is pivotal in realising India’s vision of a robust and self-sufficient aerospace defence ecosystem.

 

India’s journey towards self-reliance in defence aviation has been long and complex, with the Indian Air Force (IAF) and Hindustan Aeronautics Limited (HAL) playing pivotal roles. Achievements, setbacks, and continued aspirations for indigenisation have marked the relationship between these two institutions. While HAL has been the backbone of India’s military aviation industry, the IAF has often raised concerns over delays, quality issues, and technological limitations. This article explores the evolution of this partnership, its challenges, and the way forward for India’s indigenous aerospace ambitions.

 

HAL was founded in 1940 as Hindustan Aircraft Limited and nationalised in 1964. Over the decades, it has been responsible for manufacturing, assembling, and maintaining various aircraft for the IAF, ranging from early license-built fighters to the Indigenous Tejas fighter jet. HAL has played a crucial role in India’s defence self-sufficiency by working on aircraft like the HF-24 Marut, Dhruv helicopters, and, more recently, the LCA Tejas and AMCA (Advanced Medium Combat Aircraft) projects.

 

The Indian Air Force (IAF) has always been a strong advocate for the development of indigenous defence production capability, a key result area for the IAF. The IAF has played a crucial role in creating an aerospace ecosystem in India, operating indigenously built aircraft and those built by HAL under licence production, which has given impetus to the indigenous industry in the past. The IAF’s support for indigenised inductions and projects is evident in its involvement in the following initiatives:

 

    • Induction of LCA (IOC, FOC, Mk I and Mk 1A) and support to LCA Mk II and AMCA.
    • Induction of Ajeet and HF-24 Marut ac in the past.
    • Induction of AEW&C ac and support to indigenous AWACS project.
    • Induction of indigenous helicopter ALH and support to LCH.
    • Induction of Trainer aircraft (Kiran Mk I and Mk II, HT-2, HPT & HTT-40 aircraft).
    • Support to the replacement of Avro aircraft through the make-in-India route.
    • Integration and operationalisation of Astra Air to Air Missile and Brahmos Air to surface missiles.
    • Integration of weapons like the New Generation Anti-tank Missile, Smart anti-airfield weapons, new generation anti-radiation missiles, and Glide bombs.

 

IAF’s Dependence on HAL. HAL’s contribution to the IAF has been significant, with aircraft like the MiG-21, Jaguar, Su-30MKI, and Hawk trainers being produced or assembled under license. However, the IAF has sometimes expressed concerns over HAL’s efficiency, particularly regarding production delays, maintenance backlogs, and a lack of cutting-edge technology. The slow pace of the LCA Tejas program and delays in upgrades of existing fleets have strained the relationship between the two.

 

Success Stories: HAL’s Contributions to IAF. Hindustan Aeronautics Limited (HAL) has been the cornerstone of India’s military aviation industry, supporting the Indian Air Force (IAF) for over eight decades. From license-producing early-generation fighters to developing Indigenous aircraft and helicopters, HAL has made significant strides in enhancing India’s self-reliance in defence aviation. Despite facing challenges, its contributions have been instrumental in shaping the IAF’s combat capabilities, a fact that we, as a nation, should deeply appreciate and respect.

 

HAL’s association with the IAF began with the production of British-origin Hawker Tempest aircraft in the 1940s. However, its true contribution to India’s air power started in the 1960s when it began license manufacturing the MiG-21 under Soviet collaboration. The MiG-21 became the backbone of the IAF for decades, with HAL producing over 600 aircraft. These fighters played a crucial role in conflicts like the 1971 Indo-Pak War and the Kargil War (1999). During the same period, HAL made its first attempt at designing an indigenous fighter—the HF-24 Marut, India’s first home-grown jet.  The lessons learned from this project laid the foundation for future indigenous aircraft programs. In the 1980s, HAL was critical in assembling and maintaining the SEPECAT Jaguar, a deep-strike fighter that remains a vital part of the IAF’s fleet. HAL later upgraded the Jaguar under the DARIN modernisation programs, equipping it with modern avionics and weaponry.

 

Su-30MKI: The Backbone of the IAF. One of HAL’s biggest success stories has been the license production of the Su-30MKI, India’s premier air superiority fighter. Since the early 2000s, HAL has built over 270 Su-30MKIs, making them the most numerous and capable aircraft in the IAF’s fleet. The company has also integrated indigenous systems into the Su-30MKI, such as BrahMos-A supersonic cruise missiles, further enhancing its strike capability.

 

LCA Tejas: India’s Indigenous Fighter Jet. The Light Combat Aircraft (LCA) Tejas is a landmark achievement for HAL and India’s defence industry. After initial delays, Tejas was inducted into the IAF. The improved Tejas Mk1A, featuring advanced radar, electronic warfare systems, and upgraded weapons, is expected to be inducted soon. Developing the Tejas Mk2, Twin-Engine Deck-Based Fighter (TEDBF), and fifth-generation AMCA showcases HAL’s progress toward advanced indigenous fighters.

 

Indigenous Helicopters: ALH Dhruv, LCH, and LUH. HAL strengthened the IAF’s rotary-wing capabilities with the Advanced Light Helicopter (ALH) Dhruv and its armed variant, Rudra. Another significant achievement is the Light Combat Helicopter (LCH) Prachand, designed for high-altitude operations in Ladakh and Siachen. HAL has also developed the Light Utility Helicopter (LUH) to replace ageing Cheetah and Chetak helicopters.

 

The Challenges

Despite HAL’s significant contributions to the Indian Air Force (IAF), several challenges continue to hinder their partnership, affecting operational readiness and modernisation efforts. One of the most pressing concerns is production delays, which have consistently impacted the induction of critical platforms. The slow pace of Tejas fighter production, delays in the upgrade program, and prolonged timelines for overhauls have led to capability gaps in the IAF. These setbacks have forced the IAF to rely on older aircraft, delaying modernisation. Another significant issue is quality control, with HAL facing criticism over the reliability of its manufactured and overhauled aircraft. The users have raised concerns about technical faults, maintenance inefficiencies, and accidents of some HAL-built platforms, leading to questions about overall workmanship and durability. HAL’s slow adoption of new technologies has also affected India’s ability to match global defence standards. Unlike leading aerospace firms, HAL struggles with R&D investments and innovation, leading to dependence on foreign suppliers for engines, avionics, and weapon systems.

 

The Way Ahead for HAL: Strengthening India’s Aerospace Future

It is time for HAL to leave behind past setbacks, tackle challenges, and move on with renewed determination. Hindustan Aeronautics Limited (HAL) must adopt a multi-pronged approach. Enhancing innovation, investing in R&D, fostering collaborations, and streamlining production can make it a stronger, future-ready HAL that is ready to drive India’s aerospace future, ensuring self-reliance and global competitiveness in defence manufacturing.

Enhancing Production Efficiency. HAL needs to streamline its manufacturing and assembly processes to reduce production delays. Modern automation, digital manufacturing, and lean production techniques can significantly reduce production time. Strengthening supply chains and increasing outsourcing to private-sector firms will also boost production efficiency.

Strengthening Quality Control. HAL must revamp its quality assurance mechanisms to address users’ concerns. A stringent inspection and testing framework at every stage of aircraft manufacturing and overhaul processes will ensure higher reliability and safety. Implementing global best practices and learning from established aerospace giants can help improve production standards.

Investing in Advanced R&D. One of HAL’s most significant drawbacks is its slow pace of technological innovation. To bridge this gap, HAL must increase investments in indigenous research and development (R&D), particularly in engines, avionics, stealth technology, and composite materials. Stronger collaboration with DRDO, ISRO, and academic institutions can accelerate innovation in next-generation aircraft and air combat systems.

Strengthening the Private Sector Collaboration. Public-private partnerships will be key to HAL’s future success. Companies like Tata, L&T, and Mahindra Defence are emerging as strong players in the defence aviation sector. HAL must leverage these partnerships for joint development, co-production, and component outsourcing, improving efficiency and reducing costs.

Reforming Organisational and Management Structure. HAL must transition from a bureaucratic public-sector enterprise to a more agile, corporate-driven entity to compete globally. Introducing performance-based accountability, faster decision-making mechanisms, and strategic planning frameworks will enable HAL to operate more efficiently.

Commitment to Future Programs. HAL must stay committed to high-priority projects like the Tejas Mk II, Advanced Medium Combat Aircraft (AMCA), and Twin Engine Deck-Based Fighter (TEDBF). These programs will define the future of Indian military aviation and ensure long-term self-reliance.

Focusing on Export Potential. HAL must actively market its aircraft, helicopters, and UAVs to international customers. The Tejas LCA, LCH Prachand, and Dhruv helicopters have attracted global interest. Expanding exports will generate revenue and establish India as a key defence exporter.

 

Conclusion

HAL stands at a crucial juncture and must evolve into a world-class defence aerospace manufacturer. By focusing on efficiency, innovation, private sector collaboration, and exports, HAL can not only strengthen the IAF but also contribute significantly to India’s goal of self-reliance in defence manufacturing (Atmanirbhar Bharat).

 

Please Do Comment.

 

1295
Default rating

Please give a thumbs up if you  like The Post?

 

For regular updates, please register your email here:-

Subscribe

 

 

References and credits

To all the online sites and channels.

Pics Courtesy: Internet

Disclaimer:

Information and data included in the blog are for educational & non-commercial purposes only and have been carefully adapted, excerpted, or edited from reliable and accurate sources. All copyrighted material belongs to respective owners and is provided only for wider dissemination.

 

579: INDIA’S JOURNEY IN FIGHTER AIRCRAFT DESIGN & MANUFACTURE: CHALLENGES AND SUCCESSES

 

Pic Courtesy Net

 

My Article published on the Chanakya Forum Website on 10 Jan 25

 

India’s fighter aircraft production journey reflects a blend of significant achievements and persistent challenges. The licensed production of platforms like the Mig-21, Sukhoi Su-30MKI and SEPECAT Jaguar has strengthened the Indian Air Force (IAF) while providing invaluable experience in manufacturing and technology integration. Significant success includes the past development of the Indigenous HF-24 Marut and the recent Tejas aircraft with state-of-the-art avionics, composite materials, and a delta-wing design. Tejas has become a symbol of India’s aerospace ambitions. Additionally, the Advanced Medium Combat Aircraft (AMCA) project, aimed at producing a fifth-generation stealth fighter, underscores India’s aspirations to join global defence leaders. However, India’s fighter production has faced notable failures. Early efforts, such as the HF-24 Marut, were limited by underpowered engines and technological constraints. Delays in indigenous projects like Tejas Mk2 and AMCA and dependency on imported engines and critical systems have hampered timelines. Additionally, quality control and production scalability remain areas of concern. Despite these challenges, initiatives like “Make in India”, a government initiative to encourage manufacturing in India, and increased private sector participation foster a robust defence manufacturing ecosystem. By addressing these issues, India has the potential to emerge as a global player in fighter aircraft production and exports.

 

Journey So Far

 

India’s journey in fighter aircraft production, spanning several decades, began in the post-independence era. The timeline of this journey is marked by key milestones, from the initial reliance on imports to the transition towards licensed production and indigenous development. Below is a chronological overview of India’s significant achievements and persistent challenges in fighter aircraft production:-

 

In the 1950s, India’s first steps in aircraft production were through licensed manufacturing agreements with foreign companies. The De Havilland Vampire, a British jet fighter, was the first jet aircraft inducted into the Indian Air Force (IAF). Hindustan Aeronautics Limited (HAL) assembled the Vampire under license, marking India’s entry into jet aircraft production. In addition, HAL produced the Hawker Hunter under the UK’s license. The Hunter served as a versatile fighter-bomber during the 1965 and 1971 wars. HAL also produced Folland Gnat under license. Gnat was known as the “Sabre Slayer” for its success against the Pakistani Air Force in 1965. India later developed an improved version called Ajeet in the 1970s.

 

During the 1970s–1980s, India began exploring indigenous fighter aircraft development while continuing licensed production. The HF-24 Marut was India’s first indigenously developed jet fighter. Although it had limited operational success due to underpowered engines, it was a milestone in India’s aerospace development. During the same period, India entered into a series of agreements with the Soviet Union to produce MiG-21 fighters under license. HAL manufactured over 600 MiG-21 aircraft, which became the backbone of the IAF for decades. These projects helped HAL acquire critical knowledge in jet manufacturing.

 

In the 1990s, India procured the Anglo-French SEPECAT Jaguar for deep strike roles and began producing it under license at HAL. This period saw India modernise its air force with more advanced fighters. The Mirage 2000, a French multirole fighter, was inducted to address India’s capability gaps. While HAL did not produce this aircraft, it supported its maintenance and upgrades. India signed a deal with Russia for the licensed production of the Su-30MKI, a highly advanced multirole fighter. HAL has produced over 270 Su-30MKIs, which remain a critical component of the IAF.

 

In the last two decades, India’s focus has shifted towards indigenous fighter aircraft production, particularly with the Light Combat Aircraft (LCA) program. Designed by the Aeronautical Development Agency (ADA) and produced by HAL, the Tejas program marks a significant milestone in India’s return to indigenous fighter development. Despite delays, the Tejas program eventually achieved operational clearance, with the Mk1 variant in service and Mk1A and Mk2 under development. Work is underway to develop Advanced Medium Combat Aircraft (AMCA), a fifth-generation fighter under development by DRDO and HAL, aiming to equip the IAF with stealth capabilities.

 

Leapfrog Strategy

 

India’s leapfrog strategy for fighter aircraft development and production is a strategic imperative, aiming to bypass incremental progress and achieve advanced capabilities in a shorter timeframe. It focuses on cutting-edge technologies rather than following a linear development path. The need for strategic autonomy and rapid modernisation of the Indian Air Force drives this approach. India’s leapfrog strategy has shown promise but faces mixed results. The strategy tries to leverage foreign collaboration for critical technologies, private sector involvement, and government initiatives like “Make in India.” On the one hand, developing advanced platforms like the HAL Tejas demonstrates progress. Despite initial delays, the Tejas program has evolved into a modern, capable aircraft. However, challenges persist, raising questions about its effectiveness. Persistent project delays, reliance on imported engines and key technologies, and research and development capabilities gaps have hindered progress. Furthermore, scaling up production to meet the Indian Air Force’s demands remains challenging. The approach’s success depends on addressing these systemic issues, accelerating timelines, and building a stronger domestic defence ecosystem. It’s a work in progress with tangible but incomplete results.

 

Development and Production Ecosystem

 

India’s fighter aircraft development and production ecosystem is a collaborative effort, combining users, public and private sector research and development and manufacturing agencies, and government-led initiatives to achieve self-reliance and reduce import dependency. Hindustan Aeronautics Limited (HAL) and the Defence Research and Development Organisation (DRDO) are at the forefront of this ecosystem, driving R&D and production. However, the private sector, with companies like Tata Advanced Systems, Larsen & Toubro, and Adani Defence, is increasingly pivotal in manufacturing components, subsystems, and assemblies. Government initiatives such as “Make in India” and establishing defence industrial corridors in Tamil Nadu and Uttar Pradesh have further bolstered the ecosystem by encouraging innovation, attracting foreign investment, and creating a favourable environment for defence manufacturing. These corridors are designed to streamline production and reduce costs, making India a competitive global player. Despite these advancements, challenges remain. Nonetheless, the ecosystem is evolving steadily with sustained policy support, greater private sector involvement, and a focus on innovation.

 

Challenges

 

Fighter aircraft production in India faces technical, financial, operational, and policy challenges. Addressing these challenges is crucial to achieving self-reliance in defence manufacturing.

 

Designing and producing 5th-generation fighters involves cutting-edge technology in stealth, advanced materials, and electronics, where India is still catching up. Critical technologies are primarily imported. India’s indigenous engine development program, such as the Kaveri engine, has faced setbacks, forcing reliance on foreign engines like the General Electric F404 and F414 for the Tejas. A significant portion of critical components, including avionics, engines, and weapons systems, are imported, which increases costs and reduces self-reliance. Dependence on foreign suppliers creates vulnerabilities in geopolitical tensions, as witnessed by delays in acquiring components during global conflicts or supply chain disruptions.

 

The aerospace industry ecosystem in India, including tier-2 and tier-3 suppliers, is underdeveloped compared to global standards. There are limited domestic facilities for high-end research, testing, and simulation. HAL dominates military aircraft production, leaving limited scope for private sector participation, which could otherwise bring efficiency, innovation, and competition.

 

Programs like the Light Combat Aircraft (LCA) Tejas have taken decades to move from concept to operational deployment, leading to the obsolescence of certain features. Delays often lead to significant cost overruns, which put additional pressure on defence budgets and make indigenous programs less competitive than foreign options. Excessive bureaucracy usually slows down India’s defence procurement and manufacturing processes, causing delays in decision-making and execution. Fighter aircraft production requires massive investments in R&D, infrastructure, and production lines, straining defence budgets. Adequate budget needs to be allocated for these.

 

Designing and manufacturing advanced fighter jets require highly specialised skills, which are still developing in India. Many skilled engineers and scientists prefer opportunities abroad due to better resources and working conditions. Issues with consistency and quality control in manufacturing have occasionally plagued indigenous projects. Indigenous aircraft often face concerns regarding reliability and maintenance, which can impact their adoption by the armed forces and export potential.

 

Competing in the international market is challenging, as buyers often prefer aircraft from established manufacturers with long track records. Indian indigenous fighters compete against proven and readily available foreign options, which usually have superior capabilities. Due to intense competition, foreign collaborators often hesitate to share cutting-edge technologies, limiting the depth of technology transfer agreements. India’s defence offset policy, aimed at boosting domestic production through foreign collaborations, has seen mixed success.

 

Way Ahead

 

India has made significant strides in indigenous fighter aircraft production but faces challenges in achieving global competitiveness and self-reliance. The future of fighter aircraft production in India lies in addressing these challenges with a focused, multi-pronged strategy.

 

Leverage lessons learned from the Tejas program to avoid delays and cost overruns. Support and prioritise the Advanced Medium Combat Aircraft (AMCA) program, ensuring adequate funding, streamlined processes, and timely execution. Focus on Core Technologies. Accelerate the development of indigenous critical technologies like jet engines (e.g., Kaveri engine), AESA radars, stealth coatings, and advanced avionics.

 

Build a Robust Defence Manufacturing Ecosystem. Strengthen Indigenous R&D and technology development. Encourage tier-2 and tier-3 suppliers to build capabilities in aerospace components, materials, and electronics to develop reliable supply chains. Provide financial incentives and technical support to MSMEs involved in defence manufacturing. Promote private sector participation. Encourage private players to take on larger roles in aircraft production, from components to complete systems. Establish dedicated aerospace clusters in states to promote innovation and manufacturing at scale.

 

Enhancing Policy Frameworks and Governance. Simplify bureaucratic procedures to streamline the approval process for defence projects, ensuring faster approvals and reduced project timelines. Revise offset Policies to maximise technology transfer and industrial participation from foreign firms.

 

Collaborate with global aerospace firms to gain access to advanced research while ensuring knowledge transfer. Expand international collaborations and technology partnerships by pursuing joint development programs with global defence manufacturers, ensuring equitable technology and intellectual property sharing. Collaborate with friendly nations to co-develop fighter platforms suited to their requirements, such as light combat aircraft for smaller countries.

 

Provide diplomatic and financial support for promoting Indian fighter aircraft to foreign buyers, particularly in Asia, Africa, and South America. Ensure Indian platforms meet international quality and reliability standards to boost global confidence.

 

Leverage emerging technologies like AI and machine learning. Integrate AI for autonomous systems, combat decision-making, and predictive maintenance in fighter aircraft. Invest in hypersonic platforms to prepare for next-generation warfare. Adopt advanced manufacturing techniques like 3D printing and digital twins to reduce costs and improve precision.

 

Collaborate with academic institutions to create specialised programs in aerospace engineering and design. Establish dedicated training centers for skill development in aircraft production. Offer competitive incentives and research opportunities to prevent brain drain to other countries.

 

Establish a unified long-term vision for the users and defence manufacturing sectors to align production capabilities with future requirements. Ensure the production ecosystem is scalable to meet both domestic and export demands. Strengthen indigenous MRO facilities to reduce dependence on foreign firms to service advanced platforms.

 

Conclusion

 

India’s fighter aircraft production is at a critical juncture, with opportunities to emerge as a global aerospace hub. The way forward requires a balanced approach, combining indigenous innovation with strategic international collaborations. By fostering a strong industrial base, streamlining policies, and embracing emerging technologies, India can achieve its vision of self-reliance while contributing significantly to global defence markets.

 

Please do Comment.

1295
Default rating

Please give a thumbs up if you  like The Post?

 

Link to the article on the website:-

INDIA’S JOURNEY IN FIGHTER AIRCRAFT DESIGN & MANUFACTURE: CHALLENGES AND SUCCESSES

For regular updates, please register your email here:-

Subscribe

 

 

References and credits

To all the online sites and channels.

References:-

  1. “HAL and India’s Aerospace Journey” – HAL Publication. Documents HAL’s contributions to fighter aircraft production, including licensed and indigenous projects.
  1. Stephen P. Cohen and Sunil Dasgupta, “Arming without Aiming: India’s Military Modernisation”. Discusses India’s strategic approach to defence modernisation and its implications for Indigenous aircraft development.
  1. “Leapfrogging to Fifth-Generation Fighters: India’s AMCA Project”, Defence and Technology Review. Explains India’s leapfrog strategy in developing fifth-generation fighter aircraft.
  1. “Building India’s Aerospace Ecosystem”, Brookings India. It focuses on the opportunities and challenges of creating a self-reliant aerospace industry.
  1. Laxman Kumar Behera, “India’s Defence Industrial Base: The Role of Defence PSUs and Private Sector”. Explores the role of state-owned enterprises like HAL and private industry in defence manufacturing. Highlights challenges in India’s defence production ecosystem.
  1. “Private Sector Participation in India’s Defence Production”, Vivekananda International Foundation. Explores the growing role of private companies in defence manufacturing.
  1. “India’s Defence Industrial Corridors: A Game-Changer?” The Hindu. Evaluate the impact of Tamil Nadu and Uttar Pradesh defence corridors on production capabilities.
  1. “Make in India: Defence Manufacturing Sector”, Government of India. Overview of policies promoting Indigenous fighter aircraft production and other defence systems.
  1. Kanti Bajpai, Harsh Pant, “India’s Defence and Security: Challenges and Strategies”. Provides insights into India’s defence production strategies, including fighter aircraft, and evaluates systemic challenges.
  1. “Challenges in India’s Fighter Aircraft Development”, LiveMint. Discusses delays, quality control issues, and reliance on imports.
  1. “Collaborations in Defence Manufacturing”, FICCI defence and Aerospace Division. Industry perspective on joint ventures and foreign collaborations in fighter aircraft development.
  1. “Technology Transfers in Defence: A Case Study of India’s Fighter Jet Programs”, Stockholm International Peace Research Institute (SIPRI). Examines India’s reliance on foreign technology and the scope for indigenisation.
  1. “India’s Fighter Jet Ambitions: Lessons from Global Aerospace,” RAND Corporation. Compares India’s efforts with global benchmarks, offering insights into overcoming systemic challenges.
  1. “India’s Defense Industrial Complex: Time for Reform”, Observer Research Foundation. Analyses India’s defence manufacturing ecosystem and recommendations for improvement.

Disclaimer:

Information and data included in the blog are for educational & non-commercial purposes only and have been carefully adapted, excerpted, or edited from reliable and accurate sources. All copyrighted material belongs to respective owners and is provided only for wider dissemination.

English हिंदी