658: RARE EARTH AS RARE WEAPON: INDIA’S OPPORTUNITY, AND CHALLENGE

 

My Article was published on the Eurasian Times website

on 21 Apr 25.

 

On 04 April 2025, China imposed export controls on seven REEs (samarium, gadolinium, terbium, dysprosium, lutetium, scandium, and yttrium) and rare earth magnets, requiring special export licenses. This move, a retaliation to U.S. tariffs as high as 145%, has halted shipments from Chinese ports, severely impacting U.S. industries like defence, electric vehicles, and medical technology.

The U.S. relies heavily on China for REEs, with over 50% of its critical minerals sourced there. China’s restrictions threaten U.S. defence (F-35 jets, missiles), tech (smartphones, AI chips), and healthcare (MRI machines, cancer treatments). Analysts warn of shortages, price hikes, and delays, with some companies facing permanent supply cuts.

Rare earth elements (REEs), a group of 17 chemically similar elements including scandium, yttrium, and the 15 lanthanides, are critical to modern technology. Often dubbed the “vitamins of modern industry,” REEs are indispensable, from smartphones and electric vehicle batteries to advanced military systems and renewable energy infrastructure. However, their supply chain is heavily concentrated, with China dominating global production and processing. This dominance has transformed rare earths into a potent geopolitical tool, particularly in trade wars, most notably between the United States and China.

For India, a country rich in rare earth potential but limited in production and processing capacity, this presents an urgent strategic opportunity and a daunting set of challenges. As the global balance of power shifts, New Delhi must rethink its resource security strategy, especially in the context of the U.S.-China rivalry and the growing importance of resilient supply chains.

 

Rare Earths: Strategic Importance

Rare earth elements comprise a group of 17 chemically similar metals: the 15 lanthanides, scandium, and yttrium. Despite their name, these elements are relatively abundant in the Earth’s crust but rarely found in concentrated forms economically viable to mine. Their unique magnetic, luminescent, and electrochemical properties make them indispensable to various high-tech applications.

    • Neodymium is essential for high-performance magnets in electric motors, drones, and wind turbines.
    • Europium and terbium are used in fluorescent and LED lighting.
    • Lanthanum is used in camera lenses and hybrid vehicle batteries.
    • Yttrium finds applications in radar and superconductors.
    • Gadolinium and terbium are critical for military sensors, sonar systems, and advanced imaging technologies.
    • Cerium and lanthanum are used in catalysts for refining petroleum.

The global demand for REEs has surged with the rise of green technologies and digital economies. The International Energy Agency projects that demand for specific REEs, like neodymium, could increase tenfold by 2040 to meet net-zero emissions goals. As of 2022, the global rare earth market was valued at approximately USD 3.9 billion, and is expected to reach USD 9.6 billion by 2030, growing at a CAGR of over 10% annually due to rising demand from clean energy and defence sectors (Fortune Business Insights, 2023).

 

China’s Dominance in the Global Rare Earth Chain

China’s strategic approach to rare earths began in the 1980s. Offering low prices and absorbing environmental costs drove many competitors out of the market, especially in the U.S., Australia, and India. 1992 Deng Xiaoping famously stated, “The Middle East has oil. China has rare earths.” This foresight has translated into geopolitical leverage.

According to the U.S. Geological Survey, in 2022, China accounted for approximately 70% of global rare earth mining, over 90% of refining and processing, and 90% of rare earth permanent magnet manufacturing (International Energy Agency, 2021). This concentration gives China significant leverage in international trade disputes.

 

Rare Earths in Trade War

The U.S.-China trade war, which escalated in 2018 under the Trump administration, saw tariffs, export controls, and technological decoupling dominate bilateral relations. Rare earths quickly emerged as a flashpoint. In 2010, China briefly restricted rare earth exports to Japan during a territorial dispute, causing global prices to spike and exposing the risks of supply chain dependence. This incident foreshadowed China’s willingness to use REEs as a bargaining chip.

In 2019, amid escalating trade tensions, Chinese state media hinted at curbing rare earth exports to the United States. President Xi Jinping’s visit to a rare earth processing facility in Jiangxi province was widely interpreted to signal China’s readiness to leverage its dominance. The U.S., heavily reliant on Chinese REEs for commercial and military applications, faced a stark vulnerability. For example, the F-35 fighter jet program depends on rare earth magnets, and any disruption could halt production.

China’s control extends beyond raw materials to the processing and manufacturing of REE-based components. Even if other countries mine rare earths, they often send them to China for refining due to its advanced infrastructure and lower costs. This creates a choke point that China can exploit during trade disputes. In 2023, China introduced export controls on certain rare earth technologies, further tightening its grip and prompting concerns about supply chain security. On April 4, 2025, China imposed new export restrictions on seven critical medium and heavy rare earth elements.

 

Economic and Geopolitical Implications

The weaponisation of rare earths has far-reaching consequences. For importing nations, supply disruptions can cripple industries, inflate costs, and delay technological advancements. In 2010, Japan’s automotive and electronics sectors faced production delays due to China’s export restrictions. Similarly, a sustained cut off to the U.S. could disrupt everything from consumer electronics to defence manufacturing.

For China, rare earths are a double-edged sword. While they provide leverage, overusing this tool risks alienating trading partners and accelerating efforts to diversify supply chains. China’s domestic demand for REEs is also rising, particularly for its electric vehicle and renewable energy sectors, which could limit its ability to restrict exports without harming its economy.

Globally, the rare earth trade war underscores the fragility of critical mineral supply chains. Countries like Australia, Canada, and the European Union have recognised the need for resilience, but building alternative supply chains requires significant investment and time. Environmental regulations and high capital costs further complicate efforts to scale up mining and processing outside China.

 

India’s Untapped Potential

India is not immune to this dynamic. Although it holds the fifth-largest rare earth reserves in the world, estimated at 6.9 million tonnes (USGS, 2023), India contributes only around 1% of global rare earth production. This is due to regulatory, environmental, and infrastructure barriers.

Opportunities for India. The U.S. and its allies actively seek to reduce their reliance on China for REEs. This allows India to become an alternative supplier, particularly in downstream value chains like magnets, batteries, and high-end components. A robust rare earth industry could enhance India’s economic security and bargaining power in international diplomacy. It can also reduce import dependency for key sectors such as defence and renewable energy. Developing a domestic rare earth value chain can create high-skilled jobs and foster innovation in materials science, metallurgy, and green technologies, which are critical for India’s future economic growth. India’s monazite deposits are rich in thorium, a potential future fuel for nuclear reactors. While radiological concerns complicate extraction, if thorium-based reactors become viable, they could offer a strategic advantage.

India’s Approach. India’s rare earth sector is primarily led by Indian Rare Earths Limited (IREL), a public sector entity under the Department of Atomic Energy. The National Critical Minerals Mission, launched in 2024, aims to bolster domestic production. IREL plans to quadruple its mining capacity to 50 million tonnes annually by 2032, increasing REE output from 5,000 to 15,000 tonnes. Investments in processing and separation facilities aim to address India’s lag in midstream capabilities, though technical expertise remains a bottleneck.

    • Policy Reforms and Liberalisation. In 2023, India initiated policy changes to attract private players into critical mineral exploration. The Mines and Minerals (Development and Regulation) Amendment Act now allows private companies to bid to explore critical minerals, including REEs (Ministry of Mines, 2023). This is a significant shift from the earlier state-dominated regime.
    • Bilateral and Multilateral Cooperation. India has begun forging rare earth supply chain partnerships with like-minded democracies. Under the India-Australia Critical Minerals Investment Partnership, India has committed to co-invest in Australian REE projects. It also explores partnerships with the U.S., Japan, and the EU under the Mineral Security Partnership (MSP).
    • Research and Development. India has stepped up R&D through institutions like the Bhabha Atomic Research Centre (BARC) and the Council of Scientific and Industrial Research (CSIR) to develop indigenous REE extraction and separation technologies. Still, the gap in advanced metallurgy and processing know-how remains wide.
    • Strategic Stockpiling. India is considering creating strategic reserves for critical minerals similar to those for crude oil. This would buffer supply disruptions, although implementation remains in the early stages.

Challenges Ahead. REE extraction is environmentally damaging and involves toxic waste. India lacks the robust regulatory and technological frameworks to mitigate these hazards, especially given the proximity of mineral-rich areas to ecologically sensitive zones. While mining is a start, the real value lies in processing and manufacturing advanced REE products like permanent magnets. India currently lacks world-class facilities and expertise in this area. Despite recent reforms, bureaucratic red tape, conflicting regulations, and slow implementation continue to plague India’s mining sector. A coherent, industry-friendly policy framework is essential. India’s non-aligned posture and cautious diplomacy can sometimes limit its ability to align with Western-led initiatives fully. Balancing its strategic autonomy while engaging in rare earth diplomacy will be delicate.

 

Recommendations

Establish a National Critical Minerals Mission, modelled on the success of the Solar Mission, which can bring together ministries, PSUS, private firms, and academia to develop a holistic roadmap.

Encourage joint ventures and public-private partnerships with technologically advanced nations, which can help overcome India’s processing deficiencies.

Incentivise Green Mining and Processing, to ensure sustainability, the use of cleaner technologies and strict environmental guidelines must be incentivised.

Invest in specialised training for mineral extraction, metallurgy, and environmental management to create a workforce for the REE sector.

Prioritise Mining and Processing, focusing on developing mining and midstream capabilities before investing in magnet production and leveraging international partnerships for technology.

Incentivise Private Investment by offering tax breaks and subsidies to attract private capital, addressing IREL’s monopoly legacy.

Expand Strategic Reserves and increase REE stockpiles to buffer against supply disruptions, learning from China’s 2024 embargo.

 

Conclusion

Rare earths are no longer just a matter of economic competitiveness but a pillar of strategic autonomy.  They have become a powerful weapon in the U.S.-China trade war, reflecting the broader struggle for technological and financial supremacy. China’s dominance in the REE supply chain gives it significant leverage but also exposes the vulnerabilities of importing nations. Diversifying, recycling, and innovating are critical to reducing this dependence; however, they require time, investment, and international cooperation. As the world transitions to a greener, tech-driven future, securing a stable supply of rare earths will remain a geopolitical priority. The outcome of this struggle will shape trade relations and the global race for technological leadership.

For China, rare earths are a weapon; for the United States, a vulnerability; and for India, an opportunity. By seizing this moment, India can transform its rare earth sector from a dormant asset into a force multiplier, positioning itself as a consumer and a producer of the materials that will define the 21st century. India’s rare earth diplomacy and trade warfare strategy hinge on leveraging its vast reserves, forging international partnerships, and navigating geopolitical complexities. Opportunities to reduce global reliance on China, boost economic growth, and advance technology are significant, but technical, environmental, and financial challenges persist. By prioritising mining and processing, incentivising private investment, and deepening global alliances, India can establish itself as a pivotal player in the REE supply chain, aligning with its ambition to become a developed nation by 2047.

 

Please Add Value to the write-up with your views on the subject.

1285
Default rating

Please give a thumbs up if you  like The Post?

 

For regular updates, please register your email here:-

 

Link to the article on the website:-

Rare Earth As Rare Weapon! Amid US-China ‘Nasty’ Trade War, How Can India Use It’s ‘Dormant Asset’ To Assert Dominance

 

References and credits

To all the online sites and channels.

Pics Courtesy: Internet

Disclaimer:

Information and data included in the blog are for educational & non-commercial purposes only and have been carefully adapted, excerpted, or edited from reliable and accurate sources. All copyrighted material belongs to respective owners and is provided only for wider dissemination.

 

 

References:-

  1. Mancheri, N. A., Sundaresan, L., & Chandrashekar, S. (2019). India’s Rare Earths Industry: Challenges and Opportunities. Institute for South Asian Studies.
  1. Ministry of Mines, Government of India. (2023). Critical Minerals Strategy and MMDR Amendments. https://mines.gov.in
  1. Bhabha Atomic Research Centre (BARC). (2022). Thorium and Rare Earth Research. https://barc.gov.in
  1. Niti Aayog (2021). Strategy on Resource Efficiency in Rare Earths and Critical Minerals.
  1. Mineral Security Partnership (MSP). (2024). Overview of Global Cooperation on Critical Minerals. https://www.state.gov/mineral-security-partnership
  1. Press Information Bureau (2023). Government Notifies Critical Minerals List; Amends Mines and Minerals Act.
  1. Fortune Business Insights (2023). Rare Earth Elements Market Size, Share & Industry Analysis.
  1. International Energy Agency (2021). The Role of Critical Minerals in Clean Energy Transitions.
  1. US Geological Survey. (2023). Mineral Commodity Summaries: Rare Earths. https://pubs.usgs.gov
  1. Global Times (2019). China is ready to weaponise rare earths in a trade war.
  1. U.S. Government Accountability Office (GAO). (2020). Defence Industrial Base: DOD Efforts to Assess and Mitigate Rare Earth Risks.

650: INDIA ENTERS THE LASER AGE: MK-II(A) DEW USHERS IN A NEW ERA OF DEFENCE TECHNOLOGY

 

My article published on The EurasianTimes website on 16 Apr 25.

 

India successfully tested its first high-energy laser weapon, the Mk-II(A) Laser-Directed Energy Weapon (DEW), on April 13, 2025, at the National Open Air Range in Kurnool, Andhra Pradesh. Developed by the Defence Research and Development Organisation (DRDO), the 30-kilowatt laser system demonstrated the ability to neutralise fixed-wing, swarm, and surveillance sensors precisely at ranges up to 5 kilometers. The weapon can engage targets at the speed of light, using a laser beam to cause structural failure or destroy warheads, offering a cost-effective alternative to traditional ammunition with minimal collateral damage.

The test places India among a select group of nations, including the US, China, and Russia, with advanced laser weapon capabilities. DRDO plans to induct the land-based system within two years, with future upgrades for greater range and applications on ships, aircraft, and satellites. A more powerful 300-kilowatt “Surya” laser capable of targeting high-speed missiles and drones up to 20 kilometers away. Posts on social media highlight the weapon’s potential to counter aerial threats effectively.

Directed Energy Weapons (DEWs) represent a transformative leap in military technology. They harness concentrated energy to neutralise threats with unprecedented precision and speed, a feat once only a part of science fiction. Unlike conventional munitions, which rely on physical projectiles or explosives, DEWs deliver energy through lasers, microwaves, or particle beams to disable or destroy targets.

 

Directed Energy Weapons

At their core, DEWs operate by focusing energy to create destructive effects. The most prominent type, laser-based DEWs, emit highly focused beams of light that travel at the speed of light (approximately 300,000 kilometers per second). When this beam strikes a target, it transfers intense heat, causing structural failure, melting critical components, or detonating warheads. For instance, India’s 30-kilowatt Mk-II(A) laser demonstrated its ability to neutralise drones and sensors up to 5 kilometers away by inducing catastrophic overheating in seconds.

Microwave-based DEWs, another category, emit electromagnetic pulses to disrupt or destroy electronic systems. These are particularly effective against swarms of drones or missile guidance systems, as they can disable multiple targets simultaneously within a wide area. Though less developed, particle beam weapons accelerate charged particles to damage targets at the molecular level, offering potential for future applications.

The advantages of DEWs are manifold. They require no physical ammunition, reducing logistical burdens and costs—engagements are estimated to cost mere dollars per shot compared to thousands for missiles. This cost-effectiveness is a significant advantage in modern warfare. Their speed-of-light delivery ensures near-instantaneous impact, critical for countering fast-moving threats like hypersonic missiles. Additionally, DEWs produce minimal collateral damage, making them ideal for precision strikes in populated areas.

 

Historical Context and Global Development

The concept of DEWs dates back to science fiction, with early inspirations from works like H.G. Wells’ War of the Worlds. However, serious development began during the Cold War, with the United States and Soviet Union exploring laser technologies for missile defence. This historical context provides a deeper understanding of the evolution of technology. The U.S. Strategic Defence Initiative in the 1980s, often dubbed “Star Wars,” aimed to deploy space-based lasers to intercept ballistic missiles, though technological limitations stalled progress.

In recent decades, advancements in power generation, beam control, and thermal management have brought DEWs closer to battlefield reality. The United States has led the charge, with systems like the Navy’s 150-kilowatt Laser Weapon System (LaWS) deployed on ships to counter drones and small boats. Israel’s Iron Beam, designed to complement the Iron Dome, uses lasers to intercept rockets and mortars cost-effectively. China and Russia have also invested heavily, with China’s Silent Hunter laser system reportedly capable of disabling vehicles and drones, and Russia’s Peresvet laser designed for air defence and satellite disruption. These developments can potentially reshape international relations as countries with advanced DEW capabilities gain new strategic advantages.

 

Applications in Modern Warfare

DEWs are poised to revolutionise defence across multiple domains. On land, they offer robust protection against drones, a growing threat in asymmetric warfare. The proliferation of low-cost drones, as seen in conflicts like Ukraine, has exposed vulnerabilities in traditional air defences. Laser systems provide a sustainable countermeasure with their low per-shot cost and unlimited “magazine” (limited only by power supply). For example, India’s Mk-II(A) successfully neutralised a swarm of drones, a capability critical for border security.

DEWs enhance naval defence against anti-ship missiles, small boats, and unmanned aerial vehicles at sea. The U.S. Navy’s High Energy Laser with Integrated Optical-Dazzler and Surveillance (HELIOS) system, integrated into destroyers, exemplifies this trend. For India, equipping warships with laser systems could strengthen maritime security in the Indian Ocean, a vital trade corridor.

In the air, DEWs are being developed for aircraft to counter incoming missiles. The U.S. Air Force’s Self-Protect High Energy Laser Demonstrator (SHiELD) aims to equip fighter jets with laser pods for missile defence. India’s vision to mount lasers on aircraft could enhance its air superiority, particularly against regional adversaries with growing missile arsenals.

Space-based DEWs, though controversial, represent the next frontier. Lasers could disable enemy satellites or defend against anti-satellite weapons, securing critical communication and reconnaissance assets. India’s planned satellite-mounted lasers underscore its intent to safeguard its space infrastructure.

 

Challenges and Limitations

Despite their promise, DEWs face significant hurdles. Atmospheric conditions like rain, fog, or dust can scatter or weaken laser beams, reducing their effectiveness. India’s DRDO addresses this through advanced beam control systems, but challenges persist in diverse terrains like the Himalayas. Power requirements also pose a barrier—high-energy lasers demand substantial electricity, necessitating compact, efficient generators. For mobile platforms, this remains a logistical challenge.

Cost and scalability are additional concerns. While DEWs are cheaper per shot, initial development and deployment costs are high. India’s Mk-II(A) required years of investment, and scaling to systems like the Surya laser will demand further resources. Finally, countermeasures like reflective coatings or electronic hardening could reduce DEW effectiveness, sparking an arms race in defensive technologies. It’s important to note that while DEWs offer significant advantages, they are not without vulnerabilities. Developing effective countermeasures will be a key area of focus in the future.

 

Future of Directed Energy Weapons

The global DEW market is expected to grow rapidly, fuelled by increasing threats from drones, missiles, and electronic warfare. India’s roadmap, which includes the induction of the Mk-II(A) by 2027 and the development of the Surya laser, positions the country as a key player. Collaborative efforts with allies could hasten progress, while indigenous innovation ensures strategic autonomy.

Beyond military applications, DEWs have the potential for civilian uses, such as removing space debris or disaster response (e.g., disabling hazardous objects). Their integration into multi-layered defence systems—combining lasers, missiles, and electronic warfare—will redefine warfare as technology matures.

 

Conclusion

Directed Energy Weapons mark a paradigm shift in defence, offering speed, precision, and economy unmatched by traditional systems. India’s successful test of the Mk-II(A) laser underscores its emergence as a technological power, capable of shaping the future of warfare. While challenges remain, the trajectory is clear: DEWs are not just the stuff of science fiction but a cornerstone of 21st-century security. As nations race to master this technology, the balance of power—and the ethics of its use—will shape the decades ahead.

 

Please Add Value to the write-up with your views on the subject.

 

1285
Default rating

Please give a thumbs up if you  like The Post?

 

For regular updates, please register your email here:-

Subscribe

 

Link to the article on the website:-

Peresvet, Iron Beam, LaWS & Now India’s Mk-II(A)! How Directed Energy Weapons Could Revolutionize 21st-Century Warfare

 

References and credits

To all the online sites and channels.

Pics Courtesy: Internet

Disclaimer:

Information and data included in the blog are for educational & non-commercial purposes only and have been carefully adapted, excerpted, or edited from reliable and accurate sources. All copyrighted material belongs to respective owners and is provided only for wider dissemination.

 

 

References: –

  1. DRDO Press Release. “Successful Test of Mk-II(A) Laser Directed Energy Weapon Conducted by DRDO.” April 13, 2025.
  1. Firstpost. (2025, April 13). India’s ‘Star Wars’ weapon! DRDO tests laser that melts aerial threats. https://www.firstpost.com/india/indias-star-wars-weapon-drdo-tests-laser-that-melts-aerial-threats-13834676.html
  1. India Today. (2025, April 13). DRDO tests laser-based weapon system. https://www.indiatoday.in/india/story/drdo-laser-weapon-system-destroys-drones-missiles-test-kurnool-andhra-pradesh-2527665-2025-04-13
  1. LiveMint. (2025, April 13). In a first, India shoots down drones with laser weapon. https://www.livemint.com/news/india/in-a-first-india-shoots-down-drones-with-laser-weapon-joins-elite-league-of-nations-watch-video-11742305443609.html
  1. NDTV. (2025, April 13). India’s first futuristic “Star Wars” laser weapon. https://www.ndtv.com/india-news/indias-first-futuristic-star-wars-laser-weapon-shoots-down-drone-swarm-5420597
  1. The Hindu. (2025, April 13). DRDO tests directed energy weapon system. https://www.thehindu.com/news/national/drdo-tests-directed-energy-weapon-system-that-can-disable-drones-missiles/article68989626.ece
  1. Gormley, Dennis M. Directed Energy Weapons: Technologies, Applications and Implications. RAND Corporation, 2000.
  1. Kopp, Carlo. “Directed-Energy Weapons: Physics of High-Energy Lasers (HELs).” Defence Today, vol. 6, no. 4, 2008.
  1. Freedberg, Sydney J. Jr. “Lasers, Railguns & Directed Energy: The Future of War?” Breaking Defence, 2017.
  1. Defence Update. “Directed Energy Weapons: Changing the Face of Modern Warfare.” 2024.
  1. and International Studies (CSIS). Directed Energy and the Future Battlefield. CSIS Report, 2023.

646: PRECISION FROM AFAR: INDIA’S GLIDE BOMBS AND THE CHANGING FACE OF WARFARE

 

My Article was published on the EurasianTimes Website

on 13 April 25.

 

In early April 2025, India successfully tested two indigenously developed glide bombs. The first, Long-Range Glide Bomb (LRGB) named “Gaurav,” was tested between April 8 and 10, 2025, from a Sukhoi Su-30 MKI fighter jet of the Indian Air Force (IAF). This 1,000-kg class bomb, designed by the Defence Research and Development Organisation (DRDO) in collaboration with Research Centre Imarat, Armament Research and Development Establishment, and Integrated Test Range, Chandipur, demonstrated a range close to 100 kilometers with pinpoint accuracy. The trials involved multiple warhead configurations and targeted a land-based site on an island, paving the way for its induction into the IAF. Defence Minister Rajnath Singh and DRDO Chairman Dr. Samir V. Kamat praised the achievement, highlighting its role in enhancing India’s standoff strike capabilities and self-reliance in defence technology.

The second was the lightweight “Glide” bomb, called the SAAW (Smart Anti-Airfield Weapon), which the IAF and DRDO test-fired in Odisha. The SAAW is a lightweight, precision-guided bomb designed to target enemy airfields, runways, bunkers, and other reinforced structures at ranges up to 100 kilometers. Weighing approximately 125 kilograms, it features advanced guidance systems, including electro-optical sensors, for high accuracy. The weapon has been integrated with platforms like the Jaguar and Su-30 MKI, with plans to equip it on the Dassault Rafale and HAL Tejas MK1A. Three tests were carried out under varying release conditions and ranges, all successful. The DRDO Chairman announced that the SAAW is set for imminent induction into the armed forces, enhancing India’s precision-guided munitions arsenal.

These developments underscore India’s push toward indigenous defence solutions amid regional competition. Both bombs offer cost-effective, accurate, and standoff strike options to engage targets while keeping aircraft beyond enemy air defences. In the ever-evolving landscape of modern warfare, long-range glide bombs have emerged as a transformative technology, blending precision, affordability, and strategic flexibility. These munitions, designed to glide over extended distances to strike targets with pinpoint accuracy, have redefined how militaries project power, neutralise threats, and minimise risks to personnel and assets.

 

Long-Range Glide Bombs

Long-range glide bombs, sometimes called standoff glide munitions, are unpowered or minimally powered precision-guided weapons that rely on aerodynamic lift to travel extended distances after being released from an aircraft. Unlike traditional free-fall bombs, glide bombs have wings or fins that allow them to glide toward their target, often covering ranges from tens to hundreds of kilometers. They typically incorporate advanced guidance systems—such as GPS, inertial navigation, or laser homing—to ensure accuracy, even against moving or heavily defended targets.

The effectiveness of long-range glide bombs lies in their simplicity and adaptability. A typical glide bomb consists of several key components:-

    • Warhead. The explosive payload can range from 100 kilograms to over a ton, depending on the target. Warheads may be high-explosive, bunker-busting, or fragmentation-based.
    • Guidance System. Most glide bombs use a combination of GPS and inertial navigation for all-weather accuracy. Some advanced models incorporate laser or infrared seekers for terminal guidance, enabling strikes on moving targets.
    • Aerodynamic Surfaces. Foldable wings or fins provide lift, allowing the bomb to glide efficiently. The glide ratio—distance travelled per unit of altitude lost—determines the weapon’s range.
    • Control Unit. An onboard computer processes navigation data and adjusts control surfaces to keep the bomb on course.

When deployed, a glide bomb is released at a high altitude (typically 30,000–40,000 feet) and high speed. The launch aircraft’s momentum and altitude provide the initial energy, while the bomb’s wings extend to maximise the glide distance. As it descends, the guidance system corrects its trajectory, ensuring it hits within meters of the intended target. Some systems, like the U.S.’s Small Diameter Bomb (SDB) GBU-39, can achieve ranges exceeding 100 kilometers under optimal conditions.

These munitions bridge the gap between conventional bombs and cruise missiles. While cruise missiles are self-propelled and highly autonomous, they are expensive and complex. Glide bombs, by contrast, are more cost-effective.

 

Historical Context and Global Developments

The concept of glide bombs dates back to World War II, with early examples like Germany’s Fritz-X, a radio-guided bomb used to attack ships. However, these primitive weapons lacked the range and precision of modern systems. The development of long-range glide bombs gained momentum in the late 20th century as advancements in electronics, aerodynamics, and satellite navigation enabled greater accuracy and standoff capabilities.

The U.S. military’s Joint Direct Attack Munition (JDAM) program, introduced in the 1990s, marked a significant milestone. JDAM kits transform unguided “dumb” bombs into precision-guided munitions by adding tail fins and GPS guidance. While early JDAMs had limited range, subsequent variants like the JDAM-ER (Extended Range) incorporated foldable wings, extending their reach to over 70 kilometers. Other nations, including Russia, China, and European powers, have since developed their glide bomb systems, such as Russia’s KAB-500 series and China’s LS-6 precision-guided bombs.

Recent conflicts, particularly in Ukraine and the Middle East, have showcased the growing prominence of glide bombs. For example, Russia has extensively used glide bombs like the FAB-500-M62 with UMPK kits, allowing Su-34 and Su-35 aircraft to strike targets from beyond the reach of short-range air defences. Similarly, Western-supplied glide bombs, such as France’s AASM Hammer, have been employed by Ukraine to target Russian positions with high precision.

 

Strategic Advantages

Long-range glide bombs offer several strategic benefits that make them indispensable in modern warfare:-

    • Standoff Capability. Gliding bombs allow aircraft to strike from beyond the range of enemy air defences, reducing the risk to pilots and platforms. This is particularly valuable against adversaries with sophisticated surface-to-air missile systems.
    • Cost-Effectiveness. Compared to cruise missiles, which can cost millions per unit, glide bombs are far cheaper. For example, a JDAM-ER kit costs around $20,000–$40,000, making it a budget-friendly option for precision strikes.
    • Versatility. Glide bombs can be tailored to various targets, from fortified bunkers to mobile convoys. Modular warheads and guidance systems allow militaries to adapt them for specific missions.
    • Mass Deployment. Because they are relatively inexpensive and easy to produce, glide bombs can be used in large numbers to overwhelm defences or saturate key targets.
    • Reduced Collateral Damage. Precision guidance minimises unintended destruction, making glide bombs suitable for urban environments or near civilian infrastructure.

 

Challenges and Limitations

Despite their advantages, long-range glide bombs are not without drawbacks. Their unpowered nature makes them dependent on the launch platform’s altitude and speed, limiting their range compared to powered missiles. Additionally, while GPS guidance is efficient, it can be disrupted by electronic jamming or spoofing, as seen in conflicts like Ukraine, where Russian forces have employed electronic warfare to degrade GPS-dependent munitions. Glide bombs are also vulnerable to advanced air defences if launched within the interceptors’ range. For instance, systems like the Patriot or S-400 can engage glide bombs at certain altitudes and distances.

 

Global Proliferation and Future Trends

The proliferation of long-range glide bombs is reshaping global military dynamics. Countries like India, Turkey, and South Korea are investing heavily in indigenous glide bomb programs. At the same time, non-state actors and smaller nations seek access to these technologies through exports or reverse-engineering. This democratisation of precision strike capability could complicate future conflicts, enabling asymmetric actors to challenge stronger adversaries.

Future advancements in artificial intelligence and autonomous navigation will likely enhance glide bomb capabilities. AI-driven guidance could allow bombs to adapt to jamming or dynamically select targets in real time. Hypersonic glide bombs, which combine high speed with extended range and are also under development, promise to blur the line between bombs and missiles further.

 

Conclusion

Strategically, glide bombs shift the balance between offense and defence. By enabling standoff strikes, they challenge traditional air defence paradigms, forcing adversaries to invest in more advanced countermeasures. This arms race could drive up military spending and destabilise regions already prone to conflict.

Long-range glide bombs represent a pivotal evolution in precision warfare, offering militaries a cost-effective, versatile, and low-risk means of projecting power. Their ability to strike from a distance accurately has made them a cornerstone of modern arsenals, from superpowers to emerging nations. However, their proliferation and potential for misuse underscore the need to consider their ethical and strategic implications carefully. As technology advances, glide bombs will likely play an even more significant role in shaping the battlefields of tomorrow, balancing destructive power with the promise of precision.

 

Please Add Value to the write-up with your views on the subject.

 

1285
Default rating

Please give a thumbs up if you  like The Post?

 

For regular updates, please register your email here:-

Subscribe

 

Link to the article on the website:-

Bomb, Missile Or A Fusion? India Turns To Long-Range Glide Bombs That Proved “Effective” In Ukraine War

 

References and credits

To all the online sites and channels.

Pics Courtesy: Internet

Disclaimer:

Information and data included in the blog are for educational & non-commercial purposes only and have been carefully adapted, excerpted, or edited from reliable and accurate sources. All copyrighted material belongs to respective owners and is provided only for wider dissemination.

 

References:

  1. Press Information Bureau (PIB), Government of India. “Successful Flight-Test of Indigenous Glide Bombs ‘Gaurav’ and ‘SAAW'”. PIB, April 11, 2025.
  1. Defence Research and Development Organisation (DRDO), “DRDO Conducts Successful Trials of ‘Gaurav’ and ‘SAAW’ Glide Bombs”, DRDO, April 10, 2025.
  1. The Hindu, “India Successfully Tests Indigenous Glide Bombs ‘Gaurav’ and ‘SAAW'”, The Hindu, April 12, 2025.
  1. Hindustan Times, “DRDO’s ‘Gaurav’ and ‘SAAW’ Glide Bombs Set for Induction into IAF”, Hindustan Times, April 12, 2025.
  2. Livefist Defence, “Inside India’s Glide Bomb Program: ‘Gaurav’ and ‘SAAW’ Take Flight”, Livefist Defence, April 11, 2025.
  1. Observer Research Foundation (ORF), “India’s Glide Bomb Advancements: Strategic Implications and Regional Dynamics”, ORF, April 2025.
  1. Institute for Defence Studies and Analyses (IDSA), “Enhancing Precision Strike Capabilities: The Role of ‘Gaurav’ and ‘SAAW'”, IDSA, April 2025.
  1. Jane’s Defence Weekly. “DRDO’s Gaurav and Gautham: India’s Smart Glide Bombs Take Shape.” Janes.com, August 2023.
  1. IISS. “India’s Precision Strike Capabilities: Strategy and Deployment.” Strategic Dossier, International Institute for Strategic Studies, 2023.
  1. Defence Decode. “Gaurav vs Gautham: Decoding India’s New Air-Launched Precision Bombs.” YouTube / Defence Decode Channel, March 2024.
  1. RAND Corporation. “Emerging Military Technologies in South Asia: Glide Bombs and Beyond.” RAND Brief, 2023.
English हिंदी