576: WINGS OF THE ARMY: THE ROLE OF THE AIR ARM IN GROUND OPERATIONS

 

 

 

My article published in the News Analytics Journal in the Jan 25 issue.

 

The air arm of ground forces plays a pivotal role in modern military operations, blending speed, precision, and versatility to support soldiers on the battlefield. This specialised component acts as the army’s eyes, ears, and extended arms in the skies, transforming the dynamics of ground warfare.

 

Roles and Functions.

One of the air arm’s primary functions is reconnaissance and surveillance. Aerial platforms, including helicopters and unmanned aerial vehicles (UAVs), scout enemy positions, map terrain, and monitor troop movements, providing commanders with critical, real-time intelligence. This enables informed decision-making and swift strategy adjustment.

 

Battlefield air support (BAS) is another indispensable function. Attack helicopters, like the AH-64 Apache, deliver devastating firepower to suppress enemy forces and protect ground troops during engagements. The air arm’s ability to provide precision strikes ensures minimal collateral damage while maximising effectiveness against enemy targets.

 

Logistical support is equally vital. Transport helicopters, such as the CH-47 Chinook, and utility aircraft ensure rapid troop deployment, evacuation of casualties, and delivery of supplies to remote or contested areas. This mobility is particularly crucial in fast-moving or rugged battle environments.

 

Additionally, the air arm facilitates aerial assault operations, allowing soldiers to penetrate deep behind enemy lines. Airborne units, often deployed via helicopters or paratroopers, execute high-risk missions quickly.

 

Evolution of the Army Aviation Corps: From Observation Balloons to Modern-Day UAVs

 

The Army Aviation Corps has transformed remarkably, from humble beginnings with observation balloons to the sophisticated use of unmanned aerial vehicles (UAVs) in modern warfare. The journey began in the late 19th century when armies employed tethered observation balloons for reconnaissance. These early platforms provided a bird’s-eye view of enemy positions, revolutionising battlefield intelligence during conflicts like the American Civil War. Though rudimentary, they laid the groundwork for integrating air assets into military strategy.

 

The advent of fixed-wing aircraft during World War I marked the next leap. Early planes were primarily used for reconnaissance, but their roles expanded to include artillery spotting, aerial photography, and limited combat capabilities. By World War II, technological advances saw the introduction of transport planes and gliders, enabling airborne troops and rapid logistics support. The post-war era witnessed the rise of helicopters, which became a defining feature of the Army Aviation Corps. Their ability to hover, land in tight spaces, and provide mobility in rugged terrain revolutionised ground-air coordination.

 

In recent decades, the focus has shifted to Unmanned Aerial Vehicles (UAVs). These platforms provide real-time surveillance, precision strikes, and electronic warfare capabilities. UAVs represent the pinnacle of automation and efficiency, operating in high-risk environments without endangering human lives.

 

Air Mobility in Warzones: The Key to Quick Reaction Forces

 

Air mobility has emerged as a critical enabler for Quick Reaction Forces (QRF) in modern warfare, providing speed, flexibility, and reach in rapidly evolving conflict zones. The ability to deploy troops, equipment, and supplies swiftly via aircraft ensures that military operations can respond effectively to threats or seize opportunities on the battlefield.

 

Helicopters are at the heart of air mobility in war zones. Aircraft like the UH-60 Black Hawk and CH-47 Chinook enable the rapid transport of soldiers and cargo to areas inaccessible by land due to rugged terrain, enemy activity, or time constraints. Their versatility allows QRFs to respond to emergencies such as ambushes, breakthroughs, or sudden escalations with minimal delay.

 

Another vital function of air mobility is medical evacuation (MEDEVAC), a role that underscores the life-saving impact of the air arm’s operations. In warzones, helicopters equipped with medical facilities extract wounded personnel from the battlefield, often saving lives by providing care within the critical ‘golden hour.’ Additionally, fixed-wing aircraft contribute to air mobility by transporting larger payloads over longer distances, facilitating the movement of reinforcements, heavy equipment, and critical supplies to support ongoing operations.

 

Helicopters in Combat: The Backbone of the Army’s Air Arm

 

Helicopters have revolutionised modern warfare. They serve as the backbone of the army’s air arm and offer unparalleled mobility, versatility, and firepower. Their adaptability allows them to serve in various roles, from swift troop deployments to battlefield air support, ensuring operational success in dynamic combat environments.

 

Air mobility is one of their most significant contributions, allowing forces to bypass terrain obstacles and reach otherwise inaccessible areas. Their ability to insert and extract units in active combat zones is pivotal for rapid response and maintaining the momentum of operations.

 

In combat, attack helicopters have redefined battlefield tactics. Armed with precision-guided missiles, rockets, and advanced targeting systems, these helicopters provide close air support by neutralising enemy tanks, vehicles, and fortified positions. Their agility and firepower make them indispensable for suppressing threats and protecting ground forces.

 

Modern technological advancements have further enhanced combat helicopters’ capabilities. Night vision systems, stealth features, and advanced avionics allow them to operate effectively in diverse conditions, from deserts to dense urban landscapes.

 

Unmanned Aerial Systems (UAS): Expanding the Army’s Air Arm

 

Unmanned Aerial Systems (UAS), commonly known as drones, have revolutionised modern warfare, becoming an indispensable part of the army’s air arm. Their ability to operate without a human pilot on board, combined with advanced technology, has significantly expanded the army’s operational capabilities.

 

One of the most prominent roles of UAS is reconnaissance and surveillance. Equipped with high-resolution cameras and sensors, drones provide real-time intelligence to ground forces. They monitor enemy movements, map terrain, and identify threats, enabling commanders to make informed decisions quickly and accurately. UAS also excel in precision strikes, delivering munitions with remarkable accuracy. Armed drones have become a game-changer in counterterrorism and asymmetric warfare, allowing the army to target adversaries with minimal risk to soldiers and reduced collateral damage.

 

In addition to combat roles, drones support logistics and resupply missions, particularly in contested or remote areas. Lightweight delivery drones are increasingly used to transport critical supplies like ammunition and medical equipment directly to frontline units. The versatility of UAS extends to communication and electronic warfare. Some drones act as airborne relays, maintaining communication between dispersed units, while others are equipped for electronic jamming or cyber operations.

 

The armies worldwide are exploring new capabilities as technology advances, including autonomous swarming drones that can overwhelm enemy defences and AI-powered UAS for independent mission execution. These innovations promise to enhance battlefield efficiency further.

 

Airborne Forces: From Paratroopers to Aerial Assault Units

 

Airborne forces remain a critical component of military strategy. They have long been a symbol of speed, surprise, and tactical precision in military operations. These elite units, deployed via aircraft, have evolved from traditional paratroopers to versatile aerial assault units capable of executing complex missions in modern warfare.

 

The origins of airborne forces date back to World War II when paratroopers were first used to disrupt enemy defences by landing behind their lines. Iconic operations like D-Day and the Battle of Arnhem showcased the effectiveness of this approach. Dropped from transport planes, paratroopers brought the element of surprise, cutting off reinforcements and capturing key objectives.

 

As warfare evolved, so did the role of airborne forces. Modern aerial assault units, often deployed via helicopters, now complement traditional parachute operations. Helicopters like the UH-60 Black Hawk and CH-47 Chinook have transformed these units into highly mobile and adaptable forces. Unlike static parachute drops, helicopters provide precision insertion, allowing soldiers to land precisely where needed, even in hostile or rugged terrain.

 

Airborne forces excel in executing high-risk missions, such as seizing enemy strongholds, conducting raids, and rescuing hostages. Their ability to deploy rapidly and strike deep behind enemy lines makes them a valuable asset in asymmetric warfare. Advances in technology, such as improved navigation systems and night vision equipment, have further enhanced their effectiveness.

 

Integrated Air-Ground Operations: A New Era in Combined Arms Tactics

 

Modern warfare has entered a new era where the integration of air and ground forces is redefining battlefield tactics. Known as integrated air-ground operations, this approach emphasises the seamless coordination of assets in the air and on the ground to achieve strategic objectives with precision and efficiency.

 

The foundation of this synergy lies in real-time communication and intelligence sharing. Advanced systems enable ground commanders to direct air assets, such as fighter jets, attack helicopters, and drones, to provide battlefield air support (BAS), reconnaissance, and logistical aid. Simultaneously, aerial platforms transmit critical data about enemy positions and terrain, giving ground forces a tactical advantage.

 

The success of these operations depends on joint planning, extensive training, interoperable equipment, and shared strategic objectives. Integrated air-ground tactics have transformed warfare, ensuring that armies can operate as unified, adaptive forces capable of dominating complex and dynamic battlefields.

 

Air Arm of the Indian Army

 

The Air Arm of the Indian Army, officially known as the Army Aviation Corps (AAC), plays a vital role in enhancing the Indian Army’s operational capabilities. It was established in 1986 to provide specialised aviation support to ground forces, operating helicopters and other aircraft to support various military and logistical operations. Over the years, the Army Aviation Corps has become indispensable to the Indian Army’s combat and support operations.

 

The Indian Army’s aviation capabilities are especially significant given India’s diverse geography, including the Himalayas, dense forests, and vast border regions. The ability to swiftly deploy troops and supplies via air ensures that the army can maintain high operational readiness, even in areas with limited infrastructure.

 

The future of the Indian Army’s air arm involves integrating advanced technologies, such as UAVs (unmanned aerial vehicles) for surveillance and reconnaissance, next-generation helicopters like the Apache AH-64E attack helicopters, and a fleet of indigenous helicopters.

 

The Army Aviation Corps remains a key component as India modernises its military forces. It ensures rapid reaction and mobility for ground forces and significantly enhances India’s strategic defence capabilities.

 

The Future of the Army’s Air Arm: Emerging Technologies and Strategic Challenges

 

The future of the Army’s air arm is poised for a transformation driven by emerging technologies that promise to redefine the way ground forces conduct operations and engage in warfare. The air arm’s capabilities will expand from autonomous systems to advanced weaponry, bringing new opportunities and strategic challenges for military planners and decision-makers.

 

One of the most significant technological advancements on the horizon is the growing use of unmanned aerial vehicles (UAVs). These systems offer several advantages, including reduced risk to personnel, long endurance surveillance, and the ability to strike targets with precision. Future UAVs are expected to become more autonomous and capable of performing missions without direct human intervention. This shift could lead to the development of swarming drones, where multiple UAVs operate in unison, overwhelming enemy defences and providing real-time intelligence to ground forces.

 

Artificial intelligence (AI) will further enhance the operational efficiency of the Army’s air arm. AI-powered drones and helicopters can make real-time decisions based on battlefield data, optimising flight paths, targeting, and coordination with ground forces. This increased automation will allow air assets to act faster and more decisively, potentially reducing the reliance on human operators and increasing battlefield agility.

 

Another key focus area is the development of next-generation helicopters and vertical lift aircraft. Newer platforms with tilt-rotor design promise to deliver unprecedented speed, range, and agility, enabling faster troop insertion, mobility in complex terrains, and effective response to emerging threats.

 

Innovation and adaptation will shape the future of the Army’s air arm. As technology evolves, so must the strategies for effectively utilising air assets in combat, humanitarian missions, and national defence. The integration of advanced technologies and the challenges of modern warfare will determine how the air arm continues to shape the outcome of military operations in the years to come.

 

Conclusion. The air arm is not just a support element but a force multiplier, bridging the gap between land and air operations. Its unmatched ability to provide reconnaissance, firepower, and mobility ensures ground forces maintain their tactical edge, making it an indispensable component of today’s armies. As modern warfare increasingly relies on hybrid strategies, integrating air-ground coordination and joint operations between air forces and ground units continues to be a strategic focus for armies globally. In modern warfare, air and ground forces integration has become increasingly seamless. Advanced communication systems enable real-time coordination, ensuring air assets complement ground manoeuvres effectively. The future of army aviation will likely see further advancements in combat helicopter design, drone warfare, and next-generation vertical lift aircraft to enhance mobility, lethality, and precision in ground operations.

 

Your valuable comments are most welcome.

 

887
Default rating

Please give a thumbs up if you  like The Post?

 

For regular updates, please register your email here:-

Subscribe

 

 

References and credits

To all the online sites and channels.

References:-

    1. Chhina, Rana T.S. The Indian Army: An Illustrated Overview. Centre for Armed Forces Historical Research, 2005.
    1. Singh, Bikramjeet. “Army Aviation Corps: A Key Element in India’s Operational Strategy.” Indian Defence Review, Vol. 30, Issue 4, 2020.
    1. Joshi, Rajesh. “Transforming Army Aviation: Challenges and Opportunities.” Force Magazine, June 2019.
    1. Nambiar, A.G. “Indian Army Aviation: The Role and Future Prospects.” South Asia Defence and Strategic Review, Vol. 12, Issue 2, 2021.
    1. Indian Army Official Website. “Army Aviation Corps.” https://indianarmy.nic.in.
    1. Press Information Bureau (PIB). “Strengthening Army Aviation with Indigenous Platforms.” Government of India, 2023.
    1. Bharat Rakshak. “History and Evolution of Indian Army Aviation Corps.” http://bharat-rakshak.com.
    1. Pubby, Manu. “Army Aviation Corps Modernization: Induction of ALH Dhruv and Rudra.” Economic Times, 2022.

9. Chant, Christopher. Warfare and the Third Dimension: Aircraft, Rockets, and Missiles. Hamlyn, 1990.

    1. Zaloga, Steven J. Airborne: A Combat History of American Airborne Forces. Stackpole Books, 2010.

11 Singer, P.W. Wired for War: The Robotics Revolution and Conflict in the 21st Century. Penguin Press, 2009.

    1. Gertler, Jeremiah. U.S. Unmanned Aerial Systems. Congressional Research Service, 2012.
    1. Freedman, Lawrence. The Future of War: A History. Public Affairs, 2017.
    1. Kallenborn, Zachary. “The Era of Drone Swarms: What to Expect and How to Counter.” The Modern War Institute at West Point, 2020.

Disclaimer:

Information and data included in the blog are for educational & non-commercial purposes only and have been carefully adapted, excerpted, or edited from reliable and accurate sources. All copyrighted material belongs to respective owners and is provided only for wider dissemination.

 

565:Chat with Mr Dinesh K Vohra on News Time About IAF Challenges and Preparedness.

 

 

I had a stimulating discussion with Mr Dinesh K Vohra

 In the News Times.

 

We talked about many aspects:-

 

  • Future of air warfare.

 

  • IAF Capability Enhancement.

 

  • IAF Modernisation plans.

 

  • Chinese aspirations and defence modernisation.

 

  • Chinese demographic aspects and no contact warfare philosophy.

 

  • Effect of Himalayan Barrier.

 

  • China’s defence infrastructure development.

 

  • String of pearls and loss of neighbours.

 

  • China-Pak collusivity.

 

  • Minimum deterrence value.

 

  • Defence budget and spending.

 

  • Capability development plan and process.

 

  • Lessons from recent wars.

 

  • Russia- Ukraine war.

 

  • Israel-Hamas war.

 

  • Changes in air warfare – use of technology and new domains.

 

  • Duration of wars.

 

  • Nuclear policies, capabilities, deterrence etc.

 

  • Hypersonic weapons.

 

  • CPEC and Chinese presence in POK.

 

  • Pakistan’s economy and military modernisation.

 

  • China-Taiwan-USA.

 

  • India’s Neighbourhood.

 

Link to the video:-

 

 

Your valuable comments are most welcome.

 

887
Default rating

Please give a thumbs up if you  like The Post?

 

For regular updates, please register your email here:-

Subscribe

 

 

References and credits

To all the online sites and channels.

 

Disclaimer:

Information and data included in the blog are for educational & non-commercial purposes only and have been carefully adapted, excerpted, or edited from reliable and accurate sources. All copyrighted material belongs to respective owners and is provided only for wider dissemination.

 

 

 

 

556: LOYAL WINGMAN CONCEPT: REDEFINING AIR COMBAT (India’s Strategic Entry in the Program)

 

Pic Courtesy Net

 

My Article published on the EurasiaTimes website on 11 Dec 24.

 

The “Loyal Wingman” concept refers to an innovative approach in military aviation where autonomous or semi-autonomous drones or unmanned combat aerial vehicles (UCAVs) work in tandem with piloted aircraft to perform various support and combat missions. These drones act as “wingmen” to human pilots, providing increased situational awareness, expanding mission capabilities, and reducing the risk to human pilots by taking on more dangerous or complex tasks.

 

Roles, Tasks and Missions. Loyal wingmen can perform numerous roles, tasks and missions. They can conduct ISR (Intelligence, Surveillance, and Reconnaissance) missions, gathering real-time data and electronic jamming to disrupt enemy communications, radar, or defence systems. They can carry out precision strikes against enemy targets or act as decoys to draw enemy fire, helping protect manned aircraft. They can also provide additional defensive cover to the manned flights, using onboard sensors to detect incoming threats such as missiles or hostile aircraft.

 

Advantages. The Loyal Wingman concept offers numerous advantages across various aspects of military operations. Multiple drones working in tandem with a manned platform allow one pilot to manage more assets, effectively increasing the overall combat power without needing additional manned aircraft. They allow a more aggressive approach without fear of losing expensive manned aircraft or risking human lives.  Loyal wingmen are often equipped with advanced sensors and communication systems, allowing them to gather and share real-time intelligence with the manned aircraft. This increases the pilot’s situational awareness by providing additional eyes on the battlefield, detecting threats, and providing early warning of incoming dangers.  Their modular design allows for rapid reconfiguration based on mission requirements and is more cost-effective.

 

Technology Enablers. The Loyal Wingman concept relies on various advanced technologies to enable autonomous drones to work alongside manned aircraft in combat operations. These technologies ensure that drones can perform tasks efficiently. AI enables Loyal Wingman drones to operate independently or semi-autonomously, making real-time decisions without constant human input. AI also allows for coordination between multiple drones and manned aircraft. Loyal Wingman drones have advanced sensors that gather data across multiple spectrums, as well as secure communications and data links. Advanced navigation systems allow them to operate in environments where GPS signals may be jammed or unavailable. Many Loyal Wingman drones are designed with low radar cross-sections (RCS), infrared suppression, and other stealth features to reduce their visibility to enemy radar and sensors. An intuitive Human-Machine interface, including voice commands, graphical interfaces, or augmented reality (AR) systems, is crucial for operational success.

 

Loyal Wingman Projects Under Development

 

Several nations and defence organisations worldwide are actively developing the Loyal Wingman concept.

 

Boeing Airpower Teaming System (ATS). The Boeing Airpower Teaming System (ATS) is a ground breaking unmanned combat aircraft developed by Boeing in collaboration with the Royal Australian Air Force (RAAF). It is designed with advanced artificial intelligence (AI) and autonomy. This allows the ATS to coordinate with manned aircraft such as the F/A-18 Super Hornet, F-35 Lightning II, or other fighter jets. The ATS can operate independently or under minimal human supervision, making real-time decisions based on mission objectives, threats, and the battlefield environment.  One of the ATS’s most innovative aspects is its modular payload design. The ATS is designed to minimise its radar signature, making it more difficult for enemy forces to detect and engage. Its high speed enables it to keep up with manned fighter jets and effectively perform coordinated operations. The ATS conducted its first successful flight in March 2021, marking a significant milestone in developing unmanned teaming technology.

 

Skyborg. Skyborg is an ambitious program developed by the United States Air Force (USAF) to create a family of autonomous, unmanned combat aerial vehicles (UCAVs) that can operate alongside manned aircraft, functioning as “loyal wingmen” and performing a wide range of missions. The Skyborg initiative is part of the broader USAF vision of developing low-cost, expendable unmanned systems to complement manned aircraft like the F-35 Lightning II, F-22 Raptor, and other next-generation platforms. The core of the Skyborg program is the development of a robust autonomy core system (ACS)—a sophisticated AI platform that allows UAVs to fly and fight with little to no human input. The Skyborg program involves partnerships with several aerospace and defence companies, including Boeing, Kratos Defense, General Atomics, and Northrop Grumman, developing different UAV platforms to test Skyborg’s AI capabilities. These companies provide the hardware and airframes, while the USAF focuses on integrating the AI systems. One of the most notable platforms associated with Skyborg is the Kratos XQ-58A Valkyrie, an unmanned aerial vehicle considered a key candidate for Skyborg operations. Other platforms, like the General Atomics MQ-20 Avenger and Boeing ATS (Airpower Teaming System), are also being tested for Skyborg’s AI-driven operations. The first successful flight of a Skyborg-equipped drone took place in April 2021, when the autonomy core system was tested on a Kratos Valkyrie UAV. This marked a significant milestone in demonstrating the AI’s ability to operate autonomously, navigate, and perform essential mission functions without human intervention. The Skyborg program represents a crucial shift in the USAF’s approach to air combat, emphasising the importance of autonomous systems in future warfare.

 

Kratos XQ-58A Valkyrie. The Kratos XQ-58A Valkyrie is an experimental unmanned combat aerial vehicle (UCAV) developed by Kratos Defense & Security Solutions for the United States Air Force (USAF) as part of its Low-Cost Attritable Aircraft Technology (LCAAT) initiative. The XQ-58A is designed to function as a “loyal wingman,” supporting manned aircraft by performing various missions autonomously or under human supervision. It aims to offer a low-cost, expendable option for future combat scenarios. The XQ-58A Valkyrie is designed to operate in various roles alongside manned aircraft, such as the F-35 or F-22. The Valkyrie flew in March 2019 at Yuma Proving Ground in Arizona. Since then, it has undergone several test flights, demonstrating its ability to fly autonomously, deploy weapons, and work in tandem with manned aircraft. The ongoing development is focused on further integrating the aircraft into USAF operations and exploring its full range of mission capabilities. The project aligns with the Skyborg program.

 

Future Combat Air System (FCAS) Loyal Wing Man Project of Europe. The Future Combat Air System (FCAS) is a major European defence initiative to develop a next-generation air combat capability. It involves several countries, primarily France, Germany, and Spain. It focuses on integrating advanced technologies into a new family of systems that will replace the ageing fleets of fighter aircraft, such as the Eurofighter Typhoon and Dassault Rafale. A vital aspect of the FCAS is the development of loyal wingman drones designed to work alongside manned fighter jets. The FCAS project was officially launched in 2017. The program envisions a network of systems, often called the “system of systems,” that can communicate and operate together in a complex battlefield environment. The FCAS program is structured in phases. The goal is to have a prototype of the next-generation fighter by the mid-2030s. According to recent updates, the FCAS program continues to evolve, with ongoing discussions about integrating technologies and the roles of various nations in the project.

 

Loyal Wing Man Project Flygplan 2020 of Sweden. The Loyal Wingman Project in Sweden, known as Flygplan 2020 (or Airplane 2020), is an initiative to develop an advanced unmanned aerial vehicle (UAV) that will operate alongside Sweden’s manned fighter jets, mainly the Saab JAS 39 Gripen. The Flygplan 2020 project is being developed with various partners, including defence industry stakeholders, research institutions, and the Swedish Armed Forces. Saab, a leading aerospace and defence company, plays a crucial role in the project, leveraging its aircraft design and development expertise. The Flygplan 2020 project incorporates cutting-edge technologies, including advanced avionics, communications systems, and data fusion capabilities. While specific timelines for the Flygplan 2020 project may vary, the development of loyal wingman capabilities is expected to progress in line with advancements in drone technology and changing defence needs.

 

Russia’s Loyal Wing Man. Like other nations, Russia is also pursuing the development of the Loyal Wingman system. The Okhotnik-B is a stealthy unmanned combat aerial vehicle (UCAV) developed by Sukhoi. It is designed for various roles, including reconnaissance and precision strikes. The Okhotnik-B features a flying wing design for reduced radar signature and is intended to operate in conjunction with manned aircraft, such as the Su-57 fighter jet. The Orion drone is designed for reconnaissance and strike missions. While not a traditional Loyal Wingman platform, its capabilities align with the concept by enabling it to operate alongside manned fighters and support them in various roles. Russian Loyal Wingman systems prioritise stealth capabilities, with designs that minimise radar cross-section and infrared signatures.  Russia also aims to develop UCAVs that can operate autonomously or semi-autonomously. While Russia has made strides in developing Loyal Wingman systems, it faces challenges in achieving the same technological sophistication as in some other systems.

 

China’s Loyal Wingman. China has significantly advanced in developing its own Loyal Wingman systems. The CH-7 is an unmanned combat aerial vehicle (UCAV) developed by the Aviation Industry Corporation of China (AVIC). The CH-7 features stealthy design elements, advanced avionics, and a modular payload system, making it capable of operating alongside manned aircraft in combat scenarios. While primarily recognised as a reconnaissance and strike drone, the Wing Loong series (e.g., Wing Loong II) showcases capabilities that align with the Loyal Wingman concept. Another notable UCAV, the GJ-11, is designed with stealth features and advanced avionics. These drones are designed to coordinate with manned platforms. Chinese Loyal Wingman systems, like Russian systems, are designed to focus on low observability. China is heavily investing in AI technologies to enhance the autonomy of its Loyal Wingman systems. These drones are expected to operate semi-autonomously or autonomously, making real-time decisions during missions and adapting to changing battlefield conditions. China actively seeks to export its UAV technologies. China’s Loyal Wingman systems are expected to play a significant role in its military strategy and regional power projection.

 

Indian HAL’s CATS.

 

 

HAL CATS (Combat Air Teaming System) is an advanced unmanned combat aerial vehicle (UCAV) program being developed by Hindustan Aeronautics Limited (HAL) in collaboration with other Indian defence agencies. The program is part of India’s effort to develop indigenous drone technologies capable of operating alongside manned aircraft. HAL CATS aligns with the growing global trend of integrating unmanned systems with traditional fighter jets through Manned-Unmanned Teaming (MUM-T). The CATS program includes multiple drone systems and components that work synergistically with manned aircraft, particularly with India’s HAL Tejas Light Combat Aircraft (LCA) and other future platforms. CATS’ key elements include the following:-

 

    • CATS Warrior. The CATS Warrior is a loyal wingman UAV designed to fly alongside manned fighter jets, like the HAL Tejas. It can operate autonomously or under the direction of the manned aircraft, performing tasks such as reconnaissance, surveillance, and strike missions. The CATS Warrior will be armed with precision-guided munitions and can take on enemy targets independently or in support of manned aircraft. Its design focuses on being stealthy, agile, and capable of engaging in high-risk environments where manned platforms might face significant threats.

 

    • CATS Hunter. CATS Hunter is a high-speed drone designed to act as a cruise missile capable of long-range precision strikes. It can be deployed from manned aircraft or larger UAVs and is intended for missions that require attacking heavily defended or high-value targets. It will carry advanced payloads such as precision-guided bombs and can strike enemy radar installations, command centers, and other critical infrastructure.

 

    • CATS Alpha. CATS Alpha is a smaller, swarming drone working in groups to overwhelm enemy defences. These drones can be deployed in large numbers from manned or unmanned platforms to perform a variety of missions, including reconnaissance, electronic warfare, and decoy operations. The idea is for CATS Alpha to create confusion and disrupt enemy systems, allowing manned and larger unmanned platforms to penetrate deeper into contested areas.

 

    • CATS Infinity. CATS Infinity is a long-range, high-altitude drone designed for intelligence, surveillance, and reconnaissance (ISR) missions. It will operate at high altitudes for extended periods, providing continuous data to ground commanders and manned aircraft. CATS Infinity will likely monitor large areas, gather intelligence on enemy movements, and support strike planning by providing real-time data.

 

The HAL CATS program represents a significant step for India in developing indigenous unmanned combat systems. With increasing threats from neighbouring adversaries and a push to modernise India’s air force, CATS is crucial in bolstering the country’s aerial defence and combat capabilities. As autonomous systems become more sophisticated, HAL CATS could form the backbone of India’s future air warfare strategy. Complementing manned platforms like the Tejas and future fighters would provide a flexible, powerful, and resilient air force capable of handling modern combat challenges.

 

Your valuable comments are most welcome.

 

Link to the published article:

https://www.eurasiantimes.com/bodyguards-of-future-fighter-jets/

 

887
Default rating

Please give a thumbs up if you  like The Post?

 

For regular updates, please register your email here:-

Subscribe

 

 

References and credits

To all the online sites and channels.

References:

    1. Bradley Perrett “Design of Boeing’s loyal wingman gives clues about performance and roles”, Australian Strategic Policy Institute, 18 Nov 2021.
    1. Greg Hadley, “Wildly Successful’ Skyborg Will Become Program of Record but Won’t Stop Developing S&T”, Air & Space Forces Magazine, 16 Aug 2022.
    1. KRATOS Defence, https://www.kratosdefense.com/systems-and-platforms/unmanned-systems/aerial/tactical-uavs
    1. “Europe’s Competing Future Combat Air Systems”, EDR Magazine, 59 September-October 2021.
    1. Thomas Newdick, “This Is Saab’s Concept For A Supersonic, Stealthy Loyal Wingman Drone”, The War Zone, 09 Feb 2024.
    1. Thomas Newdick, “Russia’s Aspirational Grom Combat Drone’s Design Totally Changes, Ditches Stealth For Speed”, The War Zone, 13 Aug 2024.
    1. Seong Hyeon Choi, “China’s GJ-11 stealth drone sightings hint at future role as fighter jet ‘wingmen’”, SCMP, 15 Sep 2024.
    1. Prasad Gore, “Decoding HAL CATS Program” Defence XP, 06 Feb 2021.
    1. Insinna Valerie, “Emerging Technology in the Air Force: The Skyborg and Loyal Wingman Programs.” Defense News, 2023.
    1. “Boeing Loyal Wingman Uncrewed Aircraft Completes First Flight.” Boeing Media Release, March 2, 2021.
    1. Dr Jean-Marc Rickli, Head, Global and Emerging Security Risk, Geneva Centre for Security Policy, Switzerland, “Human-Machine Teaming in Artificial Intelligence-Driven Air Power: Future Challenges and Opportunities for the Air Force”. The Air Power Journal, Second Edition (2022).
    1. Jing Lei, Jia-Qing Song, Yan-Yan Zhu, “Analysis of the “Loyal Wingman” Technology of UAV Cooperative Operation”, International Journal of Research in Engineering and Science (IJRES), Volume 12 Issue 3 ǁ March 2024.

Disclaimer:

Information and data included in the blog are for educational & non-commercial purposes only and have been carefully adapted, excerpted, or edited from reliable and accurate sources. All copyrighted material belongs to respective owners and is provided only for wider dissemination.