678: PROJECT KUSHA: INDIA’S INDIGENOUS SKY SHIELD

 

My Article published on “The EurasianTimes” website on 10 Jun 25.

 

 

On June 8, 2025, the Defence Research and Development Organisation (DRDO) chief announced that Project Kusha is equivalent to Russia’s S-500 and surpasses the S-400 in capabilities. This positions it as a “game-changer” for India’s air defence. It is designed to counter stealth jets, drones, aircraft, and Mach 7 anti-ship ballistic missiles with an 80–90% interception success rate.

Project Kusha is an ambitious Indigenous long-range air defence system being developed by the DRDO. It is also known as the Extended Range Air Defence System (ERADS) or Precision-Guided Long-Range Surface-to-Air Missile (PGLRSAM). Project Kusha bridges the gap between the 80 km MR-SAM and 400 km S-400, integrating with systems like Akash and Barak-8.

It is a critical part of India’s self-reliance initiative, “Atmanirbhar Bharat”.  The home-grown solution aims to safeguard India’s airspace from aerial threats by strengthening defences against regional threats, particularly from Pakistan and China. The project has gained attention after the May 2025 India-Pakistan conflict, where air defence systems proved vital against drones and missiles, underscoring the need for indigenous capabilities like Kusha. With a projected deployment timeline of 2028–2029, this system is poised to enhance the operational readiness of the Indian Air Force (IAF) and Indian Navy.

 

System Specifications

Interceptor Missiles. Project Kusha’s core strength lies in its three-tiered interceptor missile system, designed to neutralise various aerial threats at varying ranges. The M1 Interceptor (150 km) missile would target threats like fighter jets, drones, and cruise missiles at shorter ranges. Its compact 250 mm diameter kill vehicle, equipped with a dual-pulse solid rocket motor and thrust vector control, ensures high manoeuvrability and precision, making it ideal for tactical engagements. The M2 Interceptor (250 km) missile with an extended range can engage advanced targets, including airborne early warning and control systems (AEW&CS) and anti-ship ballistic missiles (ASBMs). It shares the M1’s 250 mm kill vehicle, optimised for agility and accuracy against mid-range threats. The M3 Interceptor (350–400 km), the longest-range missile in the system, is designed to counter larger aircraft and potentially short- and medium-range ballistic missiles (SRBMs and IRBMs). It may feature a larger 450 mm diameter kill vehicle to achieve its extended range and enhanced lethality.

Capabilities. These interceptors boast an impressive single-shot kill probability of 85%, which rises to 98.5% when two missiles are launched in salvo mode, five seconds apart. The missiles likely employ hit-to-kill (HTK) technology, relying on kinetic energy rather than explosive warheads, similar to advanced systems like the US THAAD or SM-3. Dual-seeker technology, combining radar and infrared guidance, enhances their ability to track and destroy low-radar-signature targets, such as stealth aircraft and cruise missiles.

Advanced Radar Systems. The effectiveness of Project Kusha hinges on its state-of-the-art radar systems, particularly the Long Range Battle Management Radar (LRBMR), an S-band radar with a detection range exceeding 500 km. This radar can scan 500–600 km into enemy territory, providing early warning against stealth aircraft, drones, precision-guided munitions, and ballistic missiles. The system integrates seamlessly with India’s Integrated Air Command and Control System (IACCS), enabling real-time coordination with other air defence systems, including Akash, MRSAM, and the S-400. For naval applications, the Indian Navy is developing a 6×6-meter radar for its Next Generation Destroyer, four times larger than the radar on the Visakhapatnam-class destroyer, to detect sea-skimming missiles and ASBMs with ranges up to 1,000 km.

Multi-Layered Defence Architecture. Project Kusha is designed as a multi-layered air defence system. It provides strategic and tactical cover for critical infrastructure, military bases, and urban centers. The system’s versatility allows it to counter various threats, from low-flying cruise missiles to high-altitude aircraft and limited ballistic missile threats. By integrating with India’s Ballistic Missile Defence (BMD) program, including the AD-1 and AD-2 interceptors, Project Kusha forms a robust shield against both conventional and strategic threats.

Technological Innovations. Project Kusha incorporates cutting-edge technologies to ensure operational superiority:-

    • AI-Enabled Decision Support. The system may leverage artificial intelligence to coordinate intercepts, process real-time data from satellites, radars, AWACS, and UAVs, and optimise target engagement.
    • Dual-Seeker Technology. Combining radar and infrared seekers enhances the system’s ability to track and destroy stealthy or low-observable targets.
    • Compact Design. The M1 and M2 interceptors’ 250 mm diameter kill vehicles are notably smaller than comparable systems like the US SM-2 or SM-6, showcasing DRDO’s innovative approach to missile design.

 

Comparison with Global Systems

 

S-400 Triumf (Russia). The S-400 can engage 36 targets simultaneously at a range of 400 km. Project Kusha aims to match this range with its M3 interceptor and offers better integration with India’s defence architecture, reducing reliance on foreign maintenance and support.

Patriot (USA). While the Patriot is a proven system, Kusha’s lower cost and indigenous design provide a tailored alternative for India’s needs, with potential for greater scalability.

David’s Sling and Iron Dome (Israel). Although similar in some aspects, such as dual-seeker technology, Kusha’s M2 and M3 missiles offer longer ranges and limited BMD capabilities, unlike David’s Sling’s focus on shorter-range threats. The Iron Dome is optimised for short-range rocket interception, while Kusha targets long-range strategic threats, making it more comparable to the S-400 or Patriot.

 

Project Details & Development Journey

Approval and Funding. In May 2022, the Cabinet Committee on Security (CCS) approved the development of Project Kusha. In September 2023, the Ministry of Defence granted the Acceptance of Necessity (AoN) for procuring five IAF squadrons at an estimated cost of ₹21,700 crore (approximately US$2.6 billion). This investment reflects India’s commitment to building a self-reliant defence ecosystem that addresses modern threats.

Key Partners. The DRDO is leading the Project Kusha, with Bharat Electronics Limited (BEL) playing a pivotal role in developing critical subsystems like radars and battle management systems. The Defence Research and Development Laboratory (DRDL) is responsible for designing the interceptor missiles, while the Research Centre Imarat (RCI) focuses on advanced seeker technology. Collaboration with private industry partners is expected to accelerate development and production, aligning with India’s push for public-private partnerships in defence.

Timeline. As of May 2025, the DRDO has reportedly completed the design phase, with development of critical components underway. BEL aims to complete a prototype within 12–18 months (by November 2026–May 2027). The user trials are expected to last 12–36 months, paving the way for operational deployment by 2028–2029.

 

Strategic Significance

Self-Reliance and Cost-Effectiveness. Project Kusha is a cornerstone of India’s Atmanirbhar Bharat initiative, reducing dependence on foreign systems like the S-400, which faced delivery delays due to the Russia-Ukraine conflict. At ₹21,700 crore for five IAF squadrons, it is significantly more cost-effective than the $5.25 billion deal for five S-400 units, offering comparable capabilities tailored to India’s operational needs. This cost advantage enhances India’s ability to scale its air defence infrastructure without straining its defence budget.

Regional Deterrence.  With China and Pakistan modernising their air forces and missile arsenals, Project Kusha strengthens India’s deterrence posture. Its ability to counter stealth aircraft, cruise missiles, and ASBMs addresses emerging threats in the Indo-Pacific, particularly China’s growing naval and missile capabilities. The system’s integration with the IACCS ensures a cohesive defence network, enabling rapid response to multi-domain threats and enhancing India’s strategic autonomy.

Export Potential. Project Kusha’s advanced technology and competitive pricing position India as a potential global air defence market player. Countries seeking alternatives to Western and Russian systems may find Kusha attractive, boosting India’s defence exports and geopolitical influence. Success in this arena could elevate India’s status as a defence technology provider, complementing its exports like the BrahMos missile.

 

Challenges and Considerations

Technical Challenges. Achieving the claimed ranges with compact interceptors, particularly the 150 km M1, has raised scepticism due to its small size compared to US SM-2 or SM-6 systems. Ensuring reliability and accuracy against stealthy and hypersonic threats will require rigorous testing and validation.

Development Timeline. The 2028–2029 deployment target is ambitious, given the complexity of integrating advanced radars, AI systems, and interceptors. Delays in prototype development or user trials could push back operational readiness, as seen in past DRDO projects.

System Integration. Seamless integration with existing systems (Akash, MRSAM, S-400) and future systems (AD-1, AD-2) is essential for a cohesive air defence network. Any interoperability issues could undermine the system’s effectiveness and delay deployment.

International Competition. India will face stiff competition from established players like the US, Russia, and Israel in the global air defence market. Demonstrating technological superiority and reliability will be critical for export success and domestic adoption.

 

Future Phases

Naval Integration. The Indian Navy plans to deploy the M1 and M2 interceptors on next-generation surface combatants, such as destroyers, to counter ASBMs and other maritime threats. The enhanced naval radar system will provide 360-degree coverage, enabling early detection and interception of sea-skimming missiles. This integration underscores Project Kusha’s role in strengthening India’s maritime security, particularly in the Indo-Pacific region, where threats like China’s DF-21D “carrier-killer” missiles pose significant challenges.

Future Enhancement. Project Kusha is the first phase of a multi-phase program. Phase II aims to develop interceptors with ranges exceeding 400 km and anti-hypersonic capabilities, potentially rivalling Russia’s S-500 system. This long-term vision underscores India’s ambition to remain at the forefront of air defence technology, addressing future threats like hypersonic missiles and advanced stealth platforms.

 

Conclusion

Project Kusha represents a monumental leap in India’s quest for self-reliance in defence technology. It promises to deliver a versatile, multi-layered air defence shield capable of countering diverse threats by combining advanced interceptors, long-range radars, and AI-driven systems. A cost-effective price tag and a focus on indigenous innovation strengthen India’s strategic autonomy and position the country as a potential leader in the global defence market. However, overcoming technical challenges and meeting the ambitious 2028–2029 timeline will be critical to realising its full potential. As India advances toward operational deployment, Project Kusha is a testament to its growing technological prowess and commitment to safeguarding its skies.

 

Please Add Value to the write-up with your views on the subject.

 

1303
Default rating

Please give a thumbs up if you  like The Post?

 

Link to the article on the website:-

India’s Own S-500 & THAAD! DRDO Announces Project Kusha Sky Shield Program That Could Revolutionize Indian Defenses

For regular updates, please register your email here:-

Subscribe

 

 

References and credits

To all the online sites and channels.

Pics Courtesy: Internet

Disclaimer:

Information and data included in the blog are for educational & non-commercial purposes only and have been carefully adapted, excerpted, or edited from reliable and accurate sources. All copyrighted material belongs to respective owners and is provided only for wider dissemination.

References:-

  1. Press Information Bureau (PIB), Government of India, “DRDO Chief Briefs on Indigenous Long-Range Air Defence System ‘Project Kusha’.” PIB Release, June 8, 2025.
  2. Bedi, R. (2023, September 10). India approves indigenous long-range air defence system under Project Kusha—Jane’s Defence Weekly.
  3. Bharat Electronics Limited. (2025, May 15). Annual report 2024–2025: Progress on Project Kusha.
  4. Defence Research and Development Organisation. (2024). DRDO newsletter: Advances in air defence systems.
  5. Gupta, S. (2024, December 12). Project Kusha: India’s answer to the S-400. The Times of India.
  6. Indian Ministry of Defence. (2023, September 15). Acceptance of Necessity (AoN) for Project Kusha. Press Information Bureau.
  7. Sagar, P. (2024, November 20). Project Kusha and India’s multi-layered air defence strategy. The Diplomat.
  8. Singh, R. (2025, March 15). How Project Kusha could transform India’s defence exports. India Today.
  9. The Hindu, “Project Kusha Will Be India’s Answer to S-500, Says DRDO Chief.” The Hindu Defence Correspondent, June 8, 2025.
  10. Hindustan Times, “Explained: What Is Project Kusha and Why It Is a Game-Changer for India’s Air Defence?” Hindustan Times Defence Desk, June 9, 2025.
  11. Economic Times (ET Defence), “DRDO’s Project Kusha: India’s Indigenous Answer to S-400 and THAAD.” ET Defence, May 2025.
  12. Livefist Defence, Shukla, Shiv Aroor. “India’s Kusha Air Defence System: Details, Development and Deployment Plans.” Livefist, June 2025.
  13. Business Standard, “DRDO’s Project Kusha: DRDL, BEL, RCI Key Partners in Long-Range SAM System.” Business Standard Defence, September 2023.
  14. Jane’s Defence Weekly, “India Advances Work on Multi-Layered Air Defence with Project Kusha.” Janes.com, February 2025.
  15. ORF (Observer Research Foundation), Das, Abhijit Iyer-Mitra. “Strategic Implications of India’s Long-Range Air Defence Ambitions.” ORF Occasional Paper, March 2025.
  16. Vayu Aerospace and Defence Review, “Kusha, Akash-NG, and the Future of Indian Air Defence.” Vayu Defence Review, Issue Q2 2025.
  17. South Asia Monitor, “India’s Air Defence Evolution: From Akash to Kusha.” South Asia Monitor, April 2025.

675: AMCA PROGRAMME EXECUTION MODEL: A NEW ERA FOR INDIA’S DEFENCE PRODUCTION

 

My Article published on the EurasianTimes website on 01 Jun 25.

 

India’s quest for self-reliance in defence technology has reached a pivotal milestone with the approval of the Advanced Medium Combat Aircraft (AMCA) Programme Execution Model on May 26, 2025. This model, greenlit by Defence Minister Rajnath Singh, introduces a collaborative and competitive framework to accelerate the development of India’s first indigenous fifth-generation stealth fighter jet. Designed by the Aeronautical Development Agency (ADA) under the Ministry of Defence, the AMCA is a 25-tonne, twin-engine, multirole stealth aircraft intended to bolster the Indian airpower capabilities by 2035. The new execution model emphasises private sector involvement, international collaboration, and a competitive bidding process, significantly departing from traditional defence procurement practices.

 

Advanced Medium Combat Aircraft. AMCA is India’s fifth-generation stealth fighter jet program, developed by the Aeronautical Development Agency (ADA) under the Defence Research and Development Organisation (DRDO). Designed as a multirole, twin-engine aircraft, the AMCA aims to replace ageing fleets such as the SEPECAT Jaguar and Mirage 2000, while complementing the Rafale and future Tejas Mk2 in the Indian Air Force (IAF). The 25-tonne, twin-engine AMCA features stealth shaping, internal weapons bays, and advanced sensor fusion. It is intended to excel in air superiority, deep strike, and electronic warfare missions. It will have an advanced avionics suite, Indigenous AESA radar, and potentially AI-based mission systems. The aircraft is envisioned in two phases: Mark 1 with current-generation technologies and imported engines, and Mark 2 incorporating Indigenous sixth-generation features and an Indian powerplant. The AMCA is strategically significant as it will enhance India’s air combat capabilities and reduce reliance on foreign platforms.

Strategic Significance of AMCA. The AMCA is not just a defence project but a strategic lever and India’s entry ticket into the elite club of fifth-generation fighter operators. The AMCA program is critical to countering regional threats, particularly from China and Pakistan. China’s deployment of J-20 and J-35 stealth fighters, with plans to supply 40 J-35s to Pakistan, underscores the urgency of AMCA’s development. The IAF’s modernisation drive, aiming for 42 squadrons by 2035, relies on the AMCA to maintain a technological edge. The collaborative model’s success could position India among the elite nations with fifth-generation fighters, alongside the US, China, and Russia.

 

Historical Progress: Bottlenecks. The AMCA program was conceived in the early 2010s as a follow-on to the Light Combat Aircraft (LCA) Tejas. However, despite its strategic importance, progress was tepid due to multiple challenges. Initial timelines projected a first flight by 2020 and production by 2025, but these slipped to 2028 and 2038-39 due to funding constraints and bureaucratic delays. The program’s preliminary design phase began in 2015, with CCS approval only in 2024. The Tejas program’s prolonged development (from the 1980s to the late 2010s) is a cautionary tale, highlighting systemic issues in India’s defence ecosystem. The program lacked an empowered governance structure, slow decision-making, and HAL’s overburdened capacity. The absence of an indigenous high-thrust engine has been a persistent hurdle for the program; the Kaveri engine program’s inability to meet requirements forced reliance on foreign engines, delaying self-reliance. India lacked expertise in advanced technologies and high-thrust engines, necessitating foreign collaboration. The withdrawal from the Indo-Russian FGFA project in 2018 due to disagreements over technology transfer forced a fully indigenous approach, increasing technical risks. The new execution model addresses many of these issues by decentralising authority, attracting capital, and professionalising development.

 

Boosting the AMCA Program

Collaborative Execution Model. Announced on May 26, 2025, the AMCA Programme Execution Model introduces a public-private partnership (PPP) framework, moving away from the traditional reliance on Hindustan Aeronautics Limited (HAL) as the sole manufacturer. The new model proposes a Special Purpose Vehicle (SPV)-based framework, with a private sector partner who will work alongside the Aeronautical Development Agency (ADA), Hindustan Aeronautics Limited (HAL), and the Indian Air Force (IAF).  Under this model, the ADA will issue an Expression of Interest (EoI) to public and private entities, allowing them to bid independently or as consortia. The model offers flexibility to include global OEMs as technology partners or equity stakeholders in the SPV. This shift signifies a bold experiment breaking free from India’s traditionally state-dominated defence production ecosystem. It promises to enhance project accountability, bring commercial rigour to execution, and facilitate foreign direct investment and technology infusion. The competitive approach aims to streamline development, reduce costs, and integrate cutting-edge technologies. One of the most progressive steps is to move from a nomination-based to a competitive merit-based selection model. The collaborative model is expected to provide several key benefits to the AMCA program.

Encouraging Efficiency and Speed.  By involving private sector firms alongside HAL, the model diversifies the production base, reducing bottlenecks associated with a single manufacturer. Private companies would bring agility, innovation, and financial muscle, which can accelerate manufacturing and delivery timelines. The Ministry of Defence (MoD) has emphasised reducing timelines. Firms will be incentivised to optimise costs and timelines to win bids, reducing the bureaucratic delays that plagued earlier phases of the AMCA program. The Combined Quality Cum Cost Based System (CQCCBS) model will evaluate bids based on technical and financial merits, ensuring high-quality outcomes.

Technology Integration. Including private firms would enable access to advanced manufacturing techniques and expertise in composites, avionics, and AI. The collaboration is expected to enhance the AMCA’s technological edge, aligning it with global fifth-generation standards.

Economic and Industrial Growth. The model would foster a robust domestic aerospace ecosystem, generating employment and technological advancements. By distributing work packages among private firms, the program stimulates investment in infrastructure and skilled workforce development, aligning with India’s “Atmanirbhar Bharat” vision for self-reliance.

Risk Mitigation. The collaborative approach spreads financial and technical risks across multiple stakeholders, reducing the burden on HAL and the government. This is particularly crucial given the program’s history of delays and funding shortages.

 

Technological Challenges

However, challenges remain. Establishing fighter jet manufacturing facilities requires significant investment, and private firms may face hurdles in acquiring land, infrastructure, and skilled labour. Scepticism persists about their ability to match HAL’s experience, which could lead to initial teething issues. The AMCA’s development involves overcoming significant technological hurdles, particularly in stealth and engine capabilities.

Stealth Technology. Achieving a low radar cross-section (RCS) is critical for the AMCA’s fifth-generation credentials. The AMCA incorporates a twin-tail layout, platform edge alignment, and diverterless supersonic inlet (DSI) with serpentine ducts to conceal engine fan blades. However, refining radar deflection capabilities is essential. India is developing RAM to reduce RCS, with IIT Kanpur’s Anālakṣhya Meta-material Surface Cloaking System (MSCS) enhancing stealth against Synthetic Aperture Radar (SAR). Scaling this technology for industrial production remains a challenge. Stealth design compromises aerodynamics, reducing manoeuvrability. Balancing these aspects requires advanced computational modelling and wind-tunnel testing.

Engine Capabilities. The AMCA’s supercruise and thrust vectoring requirements demand a high-thrust engine, posing significant challenges. India’s lack of indigenous jet engine technology remains a bottleneck. Achieving sustained supersonic flight without afterburners and enabling thrust vectoring for enhanced manoeuvrability requires advanced engine designs. Integrating these systems into the AMCA’s airframe is technically demanding. The Kaveri engine project highlighted the gaps in materials science and manufacturing precision, necessitating foreign expertise.

 

International Collaboration

The AMCA program’s success hinges on robust private sector and international partners participation. Opening the doors to foreign OEMs and global collaboration is a key differentiator of the new model. Foreign OEMs from Russia, France, the UK, and the US are expected to play a crucial role, particularly in addressing technological gaps. Several roles are envisioned for global partners.

Collaborations ensure technology transfer, critical for building India’s aerospace capabilities. Technology transfer is expected, particularly for stealth shaping, radar-absorbing materials (RAM), advanced avionics, and sensors. Foreign partners can provide expertise in radar-absorbing materials, low-observable designs, and AESA radar systems. The US, with its F-35 program, and Russia, with the Su-57, offer valuable insights, though India’s withdrawal from the Indo-Russian FGFA project in 2018 underscores its focus on indigenous control.

India lacks an indigenous jet engine for the project. The AMCA Mk-1 will use GE Aerospace F414 engines (98 kN), while the Mk-2 requires a 110-120 kN engine. France’s Safran is in advanced talks for co-development, leveraging offset obligations from the Rafale deal. Rolls-Royce has offered to co-design and co-develop, allowing India to retain IP rights. Russia’s expertise in thrust vectoring and the US’s advanced engine technologies are also under consideration. Collaboration with GE (U.S.), Safran (France), or Rolls-Royce (UK) is vital.

 

Implications for HAL: From Monopoly to Competition

HAL, long seen as India’s defence aviation behemoth, now faces a significant paradigm shift. While HAL will remain a stakeholder in the AMCA program, it will no longer enjoy uncontested leadership. Its role is expected to evolve from sole integrator to collaborator, contributing expertise in production, system integration, and testing infrastructure. This transformation could prove beneficial if HAL adapts proactively.  However, the threat of being sidelined if it fails to remain competitive could motivate internal reforms, increase efficiency, and push HAL toward greater innovation and collaboration. Including foreign OEMs and private firms in the AMCA program will have profound implications for HAL.

 

Shift from Monopoly to Competition. HAL’s role as the default manufacturer is no longer guaranteed. It must now bid alongside private giants, which could challenge its dominance but also push it to improve efficiency and innovation.

Technology Transfer Opportunities. Collaboration with foreign OEMs like Safran (France) and Rolls-Royce (UK) for engine development offers HAL access to advanced technologies. However, HAL must navigate intellectual property (IP) agreements to ensure India retains significant control.

 Capacity Constraints. HAL’s current workload strains its resources, including 180 Tejas Mk-1A aircraft and four Tejas Mk-2 prototypes. The competitive model would allow HAL to focus on core competencies like final assembly while outsourcing subassemblies to private firms, potentially alleviating pressure.

 

Challenges Ahead

While the execution model marks a shift, several hurdles remain.

    • SPV Selection & Governance. Choosing the right private partner with financial depth, technical competence, and political neutrality is critical.
    • IP Ownership. Managing intellectual property rights, especially with foreign OEMs, will require legal finesse.
    • Funding Certainty. The AMCA requires an estimated ₹15,000–20,000 crore for development. Ensuring uninterrupted funding from all stakeholders will be vital.
    • Workforce & Skill Gaps. India’s aerospace talent pool must scale up to meet the design, integration, and production demands.
    • Export Potential. Safeguards and foreign collaboration agreements should not hinder India from exporting the platform to friendly nations.

 

Conclusion

The announcement of a collaborative execution model for AMCA on 26 May 2025 could be the inflexion point the program needed. The model addresses historical delays and technological gaps by fostering competition, involving private firms, and leveraging international expertise. While HAL’s role remains pivotal, shifting toward a diversified production base could redefine India’s defence manufacturing landscape. For a nation striving for strategic autonomy, technological self-reliance, and regional superiority, the success of the AMCA is non-negotiable. However, its execution depends on how well India can manage the complex dynamics of competition, collaboration, and capability development. If the SPV model succeeds, it could become the blueprint for all future high-tech defence platforms in India—from UAVs to next-gen submarines.

 

Please Add Value to the write-up with your views on the subject.

 

1303
Default rating

Please give a thumbs up if you  like The Post?

 

For regular updates, please register your email here:-

Subscribe

 

 

References and credits

To all the online sites and channels.

Pics Courtesy: Internet

Disclaimer:

Information and data included in the blog are for educational & non-commercial purposes only and have been carefully adapted, excerpted, or edited from reliable and accurate sources. All copyrighted material belongs to respective owners and is provided only for wider dissemination.

 

 

References:-

  1. Ministry of Defence, Government of India. Press Release: “Collaborative Execution Model for AMCA Programme Announced”, 26 May 2025.
  1. Aeronautical Development Agency (ADA). Overview of the Advanced Medium Combat Aircraft (AMCA) Programme.
  1. Pubby, Manu. “India’s AMCA fighter jet project to get private sector partner.” The Economic Times, May 2025.
  1. Unnithan, Sandeep. “How AMCA Will Shape India’s Future Air Power.” India Today Defence, April 2025.
  2. Raju, R. “Challenges in India’s Military Jet Engine Development.” ORF Occasional Paper No. 404, Observer Research Foundation, 2024.
  3. Joshi, Manoj. “India’s Quest for Strategic Autonomy through Defence Indigenisation.” Centre for Policy Research, 2023.
  4. DRDO Annual Report 2023–24. Chapter on Aeronautics R&D and Indigenous Fighter Programs.
  1. GlobalSecurity.org. “AMCA – Advanced Medium Combat Aircraft (India).”
  1. FlightGlobal. “India Eyes Foreign Partners for AMCA Jet Engine Collaboration.” March 2024.
  1. Vivek, Raghuvanshi. “India’s AMCA Jet to Fly with GE Engine Initially, Indigenous Powerplant Planned Later.” Defence News, July 2024.
  2. Roy, Shubhajit. “France’s Safran Proposes Joint Development of Jet Engine for India’s AMCA.” The Indian Express, January 2024.
  3. Singh, Abhijit Iyer-Mitra. “Fifth-Generation Fighter Development: Why India Needs to Rethink.” VIF Brief, Vivekananda International Foundation, 2023.

646: PRECISION FROM AFAR: INDIA’S GLIDE BOMBS AND THE CHANGING FACE OF WARFARE

 

My Article was published on the EurasianTimes Website

on 13 April 25.

 

In early April 2025, India successfully tested two indigenously developed glide bombs. The first, Long-Range Glide Bomb (LRGB) named “Gaurav,” was tested between April 8 and 10, 2025, from a Sukhoi Su-30 MKI fighter jet of the Indian Air Force (IAF). This 1,000-kg class bomb, designed by the Defence Research and Development Organisation (DRDO) in collaboration with Research Centre Imarat, Armament Research and Development Establishment, and Integrated Test Range, Chandipur, demonstrated a range close to 100 kilometers with pinpoint accuracy. The trials involved multiple warhead configurations and targeted a land-based site on an island, paving the way for its induction into the IAF. Defence Minister Rajnath Singh and DRDO Chairman Dr. Samir V. Kamat praised the achievement, highlighting its role in enhancing India’s standoff strike capabilities and self-reliance in defence technology.

The second was the lightweight “Glide” bomb, called the SAAW (Smart Anti-Airfield Weapon), which the IAF and DRDO test-fired in Odisha. The SAAW is a lightweight, precision-guided bomb designed to target enemy airfields, runways, bunkers, and other reinforced structures at ranges up to 100 kilometers. Weighing approximately 125 kilograms, it features advanced guidance systems, including electro-optical sensors, for high accuracy. The weapon has been integrated with platforms like the Jaguar and Su-30 MKI, with plans to equip it on the Dassault Rafale and HAL Tejas MK1A. Three tests were carried out under varying release conditions and ranges, all successful. The DRDO Chairman announced that the SAAW is set for imminent induction into the armed forces, enhancing India’s precision-guided munitions arsenal.

These developments underscore India’s push toward indigenous defence solutions amid regional competition. Both bombs offer cost-effective, accurate, and standoff strike options to engage targets while keeping aircraft beyond enemy air defences. In the ever-evolving landscape of modern warfare, long-range glide bombs have emerged as a transformative technology, blending precision, affordability, and strategic flexibility. These munitions, designed to glide over extended distances to strike targets with pinpoint accuracy, have redefined how militaries project power, neutralise threats, and minimise risks to personnel and assets.

 

Long-Range Glide Bombs

Long-range glide bombs, sometimes called standoff glide munitions, are unpowered or minimally powered precision-guided weapons that rely on aerodynamic lift to travel extended distances after being released from an aircraft. Unlike traditional free-fall bombs, glide bombs have wings or fins that allow them to glide toward their target, often covering ranges from tens to hundreds of kilometers. They typically incorporate advanced guidance systems—such as GPS, inertial navigation, or laser homing—to ensure accuracy, even against moving or heavily defended targets.

The effectiveness of long-range glide bombs lies in their simplicity and adaptability. A typical glide bomb consists of several key components:-

    • Warhead. The explosive payload can range from 100 kilograms to over a ton, depending on the target. Warheads may be high-explosive, bunker-busting, or fragmentation-based.
    • Guidance System. Most glide bombs use a combination of GPS and inertial navigation for all-weather accuracy. Some advanced models incorporate laser or infrared seekers for terminal guidance, enabling strikes on moving targets.
    • Aerodynamic Surfaces. Foldable wings or fins provide lift, allowing the bomb to glide efficiently. The glide ratio—distance travelled per unit of altitude lost—determines the weapon’s range.
    • Control Unit. An onboard computer processes navigation data and adjusts control surfaces to keep the bomb on course.

When deployed, a glide bomb is released at a high altitude (typically 30,000–40,000 feet) and high speed. The launch aircraft’s momentum and altitude provide the initial energy, while the bomb’s wings extend to maximise the glide distance. As it descends, the guidance system corrects its trajectory, ensuring it hits within meters of the intended target. Some systems, like the U.S.’s Small Diameter Bomb (SDB) GBU-39, can achieve ranges exceeding 100 kilometers under optimal conditions.

These munitions bridge the gap between conventional bombs and cruise missiles. While cruise missiles are self-propelled and highly autonomous, they are expensive and complex. Glide bombs, by contrast, are more cost-effective.

 

Historical Context and Global Developments

The concept of glide bombs dates back to World War II, with early examples like Germany’s Fritz-X, a radio-guided bomb used to attack ships. However, these primitive weapons lacked the range and precision of modern systems. The development of long-range glide bombs gained momentum in the late 20th century as advancements in electronics, aerodynamics, and satellite navigation enabled greater accuracy and standoff capabilities.

The U.S. military’s Joint Direct Attack Munition (JDAM) program, introduced in the 1990s, marked a significant milestone. JDAM kits transform unguided “dumb” bombs into precision-guided munitions by adding tail fins and GPS guidance. While early JDAMs had limited range, subsequent variants like the JDAM-ER (Extended Range) incorporated foldable wings, extending their reach to over 70 kilometers. Other nations, including Russia, China, and European powers, have since developed their glide bomb systems, such as Russia’s KAB-500 series and China’s LS-6 precision-guided bombs.

Recent conflicts, particularly in Ukraine and the Middle East, have showcased the growing prominence of glide bombs. For example, Russia has extensively used glide bombs like the FAB-500-M62 with UMPK kits, allowing Su-34 and Su-35 aircraft to strike targets from beyond the reach of short-range air defences. Similarly, Western-supplied glide bombs, such as France’s AASM Hammer, have been employed by Ukraine to target Russian positions with high precision.

 

Strategic Advantages

Long-range glide bombs offer several strategic benefits that make them indispensable in modern warfare:-

    • Standoff Capability. Gliding bombs allow aircraft to strike from beyond the range of enemy air defences, reducing the risk to pilots and platforms. This is particularly valuable against adversaries with sophisticated surface-to-air missile systems.
    • Cost-Effectiveness. Compared to cruise missiles, which can cost millions per unit, glide bombs are far cheaper. For example, a JDAM-ER kit costs around $20,000–$40,000, making it a budget-friendly option for precision strikes.
    • Versatility. Glide bombs can be tailored to various targets, from fortified bunkers to mobile convoys. Modular warheads and guidance systems allow militaries to adapt them for specific missions.
    • Mass Deployment. Because they are relatively inexpensive and easy to produce, glide bombs can be used in large numbers to overwhelm defences or saturate key targets.
    • Reduced Collateral Damage. Precision guidance minimises unintended destruction, making glide bombs suitable for urban environments or near civilian infrastructure.

 

Challenges and Limitations

Despite their advantages, long-range glide bombs are not without drawbacks. Their unpowered nature makes them dependent on the launch platform’s altitude and speed, limiting their range compared to powered missiles. Additionally, while GPS guidance is efficient, it can be disrupted by electronic jamming or spoofing, as seen in conflicts like Ukraine, where Russian forces have employed electronic warfare to degrade GPS-dependent munitions. Glide bombs are also vulnerable to advanced air defences if launched within the interceptors’ range. For instance, systems like the Patriot or S-400 can engage glide bombs at certain altitudes and distances.

 

Global Proliferation and Future Trends

The proliferation of long-range glide bombs is reshaping global military dynamics. Countries like India, Turkey, and South Korea are investing heavily in indigenous glide bomb programs. At the same time, non-state actors and smaller nations seek access to these technologies through exports or reverse-engineering. This democratisation of precision strike capability could complicate future conflicts, enabling asymmetric actors to challenge stronger adversaries.

Future advancements in artificial intelligence and autonomous navigation will likely enhance glide bomb capabilities. AI-driven guidance could allow bombs to adapt to jamming or dynamically select targets in real time. Hypersonic glide bombs, which combine high speed with extended range and are also under development, promise to blur the line between bombs and missiles further.

 

Conclusion

Strategically, glide bombs shift the balance between offense and defence. By enabling standoff strikes, they challenge traditional air defence paradigms, forcing adversaries to invest in more advanced countermeasures. This arms race could drive up military spending and destabilise regions already prone to conflict.

Long-range glide bombs represent a pivotal evolution in precision warfare, offering militaries a cost-effective, versatile, and low-risk means of projecting power. Their ability to strike from a distance accurately has made them a cornerstone of modern arsenals, from superpowers to emerging nations. However, their proliferation and potential for misuse underscore the need to consider their ethical and strategic implications carefully. As technology advances, glide bombs will likely play an even more significant role in shaping the battlefields of tomorrow, balancing destructive power with the promise of precision.

 

Please Add Value to the write-up with your views on the subject.

 

1303
Default rating

Please give a thumbs up if you  like The Post?

 

For regular updates, please register your email here:-

Subscribe

 

Link to the article on the website:-

Bomb, Missile Or A Fusion? India Turns To Long-Range Glide Bombs That Proved “Effective” In Ukraine War

 

References and credits

To all the online sites and channels.

Pics Courtesy: Internet

Disclaimer:

Information and data included in the blog are for educational & non-commercial purposes only and have been carefully adapted, excerpted, or edited from reliable and accurate sources. All copyrighted material belongs to respective owners and is provided only for wider dissemination.

 

References:

  1. Press Information Bureau (PIB), Government of India. “Successful Flight-Test of Indigenous Glide Bombs ‘Gaurav’ and ‘SAAW'”. PIB, April 11, 2025.
  1. Defence Research and Development Organisation (DRDO), “DRDO Conducts Successful Trials of ‘Gaurav’ and ‘SAAW’ Glide Bombs”, DRDO, April 10, 2025.
  1. The Hindu, “India Successfully Tests Indigenous Glide Bombs ‘Gaurav’ and ‘SAAW'”, The Hindu, April 12, 2025.
  1. Hindustan Times, “DRDO’s ‘Gaurav’ and ‘SAAW’ Glide Bombs Set for Induction into IAF”, Hindustan Times, April 12, 2025.
  2. Livefist Defence, “Inside India’s Glide Bomb Program: ‘Gaurav’ and ‘SAAW’ Take Flight”, Livefist Defence, April 11, 2025.
  1. Observer Research Foundation (ORF), “India’s Glide Bomb Advancements: Strategic Implications and Regional Dynamics”, ORF, April 2025.
  1. Institute for Defence Studies and Analyses (IDSA), “Enhancing Precision Strike Capabilities: The Role of ‘Gaurav’ and ‘SAAW'”, IDSA, April 2025.
  1. Jane’s Defence Weekly. “DRDO’s Gaurav and Gautham: India’s Smart Glide Bombs Take Shape.” Janes.com, August 2023.
  1. IISS. “India’s Precision Strike Capabilities: Strategy and Deployment.” Strategic Dossier, International Institute for Strategic Studies, 2023.
  1. Defence Decode. “Gaurav vs Gautham: Decoding India’s New Air-Launched Precision Bombs.” YouTube / Defence Decode Channel, March 2024.
  1. RAND Corporation. “Emerging Military Technologies in South Asia: Glide Bombs and Beyond.” RAND Brief, 2023.
English हिंदी