617: INPUTS FOR QUESTIONNAIRE ON INDIA-TAIWAN RELATIONS

 

1: How important are semiconductors between the India-Taiwan bilateral ties?

    • Taiwan dominates semiconductor manufacturing, and India aspires to initially become self-reliant and a semiconductor hub in the long run.
    • Semiconductor cooperation can be a key element in India-Taiwan’s bilateral relations.
    • Taiwan is home to TSMC (Taiwan Semiconductor Manufacturing Company), the world’s leading contract chip manufacturer, and other key semiconductor firms like UMC and MediaTek.
    • Taiwan accounts for over 60% of global semiconductor production, making it indispensable in the global semiconductor supply chain.
    • India strives to become a major semiconductor manufacturing and design player with government initiatives like the Semiconductor Mission and incentives under the PLI (Production-Linked Incentive) scheme.
    • However, India lacks advanced fabrication facilities and relies on imports for its semiconductor needs.
    • Taiwanese firms, including TSMC and UMC, have been in discussions about establishing semiconductor plants in India.
    • India and Taiwan have explored partnerships to set up semiconductor packaging and testing facilities.
    • The most prominent initiative in the past was Foxconn’s joint venture with Vedanta to set up a semiconductor fab in India. However, this project faced setbacks, and Foxconn later withdrew.
    • Taiwan’s MediaTek has R&D operations in India, and more companies are eyeing design and software collaborations.
    • Taiwan faces increasing pressure from China, while India has border tensions with Beijing. Strengthening semiconductor ties helps both nations reduce reliance on China.
    • Amid U.S.-China tech tensions, India is a potential alternative for Taiwan to de-risk its semiconductor supply chains. However, due to pressure from China, Taiwan’s firms may hesitate to invest heavily in India.
    • Semiconductor cooperation offers mutual benefits in economic growth, technological advancement, and strategic realignment.

 

2a: How’s the development of an AI-technology innovation ecosystem linked to semiconductors?

    • This relationship between AI and Semiconductors is symbiotic.
    • Developing an AI-technology innovation ecosystem depends on robust, specialised chips for computation. On the other hand, advances in AI drive semiconductor innovation.
    • AI is revolutionising the semiconductor industry.
    • AI workloads like machine learning (ML), deep learning, and generative AI require enormous computational capacity, which is powered by advanced semiconductor technologies like Graphics Processing Units (GPUs).
    • Application-Specific Integrated Circuits (ASICs) and custom chips (e.g., Google’s TPUs) are optimised for AI workloads, enhancing performance and efficiency.
    • Future AI applications would demand breakthroughs in semiconductor design (Neuromorphic & Quantum Chips), mimicking brain-like processing or leveraging quantum computing.
    • AI-enabled devices (smartphones, IoT, autonomous systems) require power-efficient chips for real-time AI inference.
    • A thriving AI ecosystem requires cutting-edge semiconductor technology, while AI drives semiconductor innovations.
    • Countries investing in AI are also focusing on semiconductor self-sufficiency.
    • To stay competitive, nations aiming to lead in AI must also invest in advanced semiconductor capabilities.

 

2b How’s Taiwan important for Indian AI?

    • Taiwan is Important for Indian AI development, and it can play a critical role in India’s AI ambitions due to its dominance in semiconductor manufacturing, expertise in AI hardware, and potential for technological collaboration.
    • Taiwan is home to TSMC, MediaTek, and other key players; India’s AI growth is closely linked to its semiconductor partnerships with Taiwan.
    • Taiwan’s MediaTek supplies AI-driven smartphone processors, the key to India’s mobile AI market.
    • Taiwan’s semiconductor firms could help India build chip fabrication and packaging infrastructure, supporting India’s AI industry.
    • Taiwan’s expertise in embedded AI, 5G chips, and smart sensors can enhance India’s AI-driven IoT industry.
    • Taiwan has top research institutions (e.g., Academia Sinica, ITRI) specialising in AI-chip co-development, with which India can collaborate.
    • India’s AI Software Strength – India excels in AI/ML software development, while Taiwan specialises in hardware. This complementary relationship can lead to co-innovation in AI applications.
    • Taiwan and India can expand cooperation in AI-powered automation, fintech, and healthcare solutions.
    • India relies on Taiwan for high-end GPUs and AI chips, which are essential for AI supercomputing and cloud AI services.
    • Taiwan is vital for India’s AI ecosystem due to its semiconductor leadership, AI hardware expertise, and potential investment in India’s chip industry.

 

2c  Is ‘AI bias’ one sphere in which India and Taiwan should collaborate? I think AI bias will be used in narrative warfare by China. So, it sounds logical that India will look towards Taiwan for it. That’s why this question.

    • Yes, AI bias is a critical area where India and Taiwan should collaborate, especially considering how China could leverage AI for narrative warfare, disinformation, and ideological control.
    • Given Taiwan’s experience in countering Chinese propaganda and cognitive warfare and India’s strength in AI software development, a partnership between the two could be mutually beneficial.
    • AI models learn from data, and if this data is manipulated, it can shape narratives in ways that serve geopolitical agendas. China has a history of AI-enabled information control.
    • Chinese AI firms develop models that filter, distort, or suppress certain narratives (e.g., Tiananmen Square and Uyghur issues).
    • AI-driven bot networks and deepfakes help China push state-controlled narratives globally.
    • AI-powered language models can spread biased historical or political perspectives on global platforms.
    • Given these threats, India and Taiwan must proactively develop AI systems that resist bias and manipulation to safeguard their information sovereignty.
    • India (with its AI research institutions like IITs, IIITs, and NITI Aayog) and Taiwan (via Academia Sinica, ITRI) can create joint frameworks for identifying and countering AI bias.
    • Instead of relying on U.S. or China-dominated AI models (GPT, ERNIE), India and Taiwan can work on regional AI models trained on neutral or diverse datasets.
    • Taiwan is already a leader in countering Chinese misinformation; India can integrate these capabilities into its AI-driven news verification systems.
    • India and Taiwan should limit dependency on Chinese AI tools, chips, and cloud services to avoid hidden biases and surveillance risks.
    • China can manipulate AI models. India and Taiwan must ensure independent, bias-resistant AI tools.
    • Both countries face Chinese psy-ops through TikTok clones, AI-driven chatbots, and misinformation on global platforms. Collaboration on AI-driven digital hygiene strategies is essential.
    • AI bias is not just a technical issue but a geopolitical weapon. Given China’s advancements in AI-enabled narrative control, India and Taiwan must collaborate to develop AI models that are transparent, unbiased, and resilient to manipulation.

 

3: Do you think Taiwan will determine the QUAD’s Indo-Pacific policy? Do you think Taiwan will be included in QUAD Plus?

    • Taiwan is strategically important for the Indo-Pacific.
    • Its inclusion in QUAD+ or any official QUAD policy is highly sensitive due to geopolitical constraints, primarily the One-China policy followed by QUAD members.
    • However, Taiwan is already a de facto part of the Indo-Pacific security architecture, and its role may increase informally without direct QUAD membership.
    • Taiwan plays a key role in significant aspects of the Indo-Pacific strategy.
    • India, Japan, and Australia have quietly increased economic, diplomatic, and military engagement with Taiwan.
    • The U.S. openly supports Taiwan’s defence and maintains strong military ties with Taiwan (e.g., arms sales, intelligence-sharing).
    • Joint statements focus on ‘peace and stability in the Taiwan Strait’, a veiled warning to China.
    • This suggests Taiwan is a silent but critical factor in QUAD’s Indo-Pacific strategy.
    • The idea of QUAD+ (expanded QUAD partnerships) includes countries like South Korea, Vietnam, the Philippines, and European allies. Taiwan’s inclusion is politically tricky but possible in indirect ways.
    • QUAD could integrate Taiwan into its semiconductor, AI, and cyber initiatives without direct military ties.
    • Taiwan is already working with the U.S. and Japan on cyber defence against China.
    • QUAD’s Indo-Pacific Economic Framework (IPEF) could involve Taiwan in trade and investment deals.
    • Taiwan’s inclusion could provoke Chinese military aggression, making regional stability harder to maintain.
    • India’s stance on Taiwan is cautious but evolving, with no diplomatic recognition (it follows the One-China policy but doesn’t reaffirm it actively), expanding economic & tech ties, and a measured stance on security issues (India doesn’t directly engage on Taiwan’s defence but is watching U.S.-China tensions closely).
    • Taiwan will likely play a more significant role in QUAD’s Indo-Pacific policy, but formal membership in QUAD+ is unlikely in the near future due to China’s geopolitical sensitivities.

 

4. Do you think,  that Taiwanese TSMC’s $100 billion investment in the US has any lessons for India-Taiwan bilateral ties?

Taiwan Semiconductor Manufacturing Company’s (TSMC) $100 billion investment in the U.S. offers several lessons for India-Taiwan bilateral ties, particularly in the semiconductor sector.

TSMC’s investment in the U.S. is not merely a business move but a strategic decision driven by geopolitical concerns, primarily supply chain resilience and U.S.-China tensions. Similarly, India must recognise the strategic value of deepening semiconductor cooperation with Taiwan, not just as an economic initiative but as a crucial aspect of national security and self-reliance (Atmanirbhar Bharat).

Taiwan seeks to diversify its semiconductor production due to concerns about a potential Chinese invasion. The U.S. has emerged as one alternative, and India could position itself as another. New Delhi can present itself as a stable and growing economy with skilled labour and a commitment to semiconductor self-sufficiency.

The U.S. successfully attracted TSMC by offering massive incentives under the CHIPS Act, including subsidies, tax breaks, and infrastructure support. Under its Semiconductor Mission, India is offering similar incentives, but the challenge is ensuring a competitive ecosystem, covering land acquisition, power supply, and water availability (all crucial for fabs). If India wants Taiwanese firms like TSMC or UMC to invest, it must streamline regulatory processes and enhance the ease of doing business.

 

Please Do Comment.

 

1291
Default rating

Please give a thumbs up if you  like The Post?

 

For regular updates, please register your email here:-

Subscribe

 

 

References and credits

To all the online sites and channels.

Pics Courtesy: Internet

Disclaimer:

Information and data included in the blog are for educational & non-commercial purposes only and have been carefully adapted, excerpted, or edited from reliable and accurate sources. All copyrighted material belongs to respective owners and is provided only for wider dissemination.

 

609: ARTIFICIAL INTELLIGENCE: SHIFTING THE BALANCE OF POWER

 

Presented my paper at the Forum for Global Studies (Mar 25)

 

Artificial Intelligence (AI) transforms global power structures, challenging traditional geopolitical, economic, and military balances. As AI develops accelerated, nations, corporations, and non-state actors increasingly leverage its capabilities to gain strategic advantages. This paper examines AI’s role in reshaping power dynamics, focusing on military applications, economic competitiveness, and political influence.

 

AI in Military Power Projection

Artificial Intelligence (AI) revolutionises military power structures, reshaping warfare, defence strategies, and geopolitical dominance. Nations investing in AI-driven military capabilities gain strategic advantages in battlefield efficiency, intelligence processing, and autonomous systems. Integrating AI in military systems enhances combat efficiency, decision-making speed, and operational effectiveness. AI-powered platforms process vast amounts of data in real-time, improving strategic responses and minimising human intervention in combat.

Autonomous Weapons Systems. Autonomous weapons, also known as lethal autonomous weapon systems (LAWS), utilise AI to identify and engage targets without direct human intervention. These systems revolutionise modern warfare by increasing precision and reducing risks to human soldiers. One of the primary advantages of autonomous weapons is the reduction of human casualties. AI-driven combat systems lower risks for soldiers by automating dangerous missions and keeping human personnel out of harm’s way. Additionally, these systems enhance operational efficiency, as AI-powered drones and robots can operate continuously without fatigue, improving battlefield endurance. Another significant benefit is precision targeting, where AI-enhanced targeting minimises collateral damage, increasing mission accuracy and reducing unintended casualties. Despite these advantages, autonomous weapons raise serious concerns. One major issue is accountability—determining responsibility for autonomous strikes remains a significant challenge. Another risk is the potential for escalation, as AI-driven weapons could lead to rapid, unintended conflicts that spiral out of control. Furthermore, regulatory challenges persist as international treaties struggle to govern AI-enabled autonomous combat systems, making enforcing oversight and ethical considerations difficult.

AI in Cyber Warfare. AI’s role in cyber warfare has transformed digital defence and offensive capabilities. Machine learning algorithms enhance cyber security by detecting and mitigating cyber threats in real time, while AI-driven attacks exploit vulnerabilities with unprecedented sophistication. AI-generated malware is one of the most dangerous offensive cyber tools, as it can adapt and evolve to bypass security protocols. Automated phishing attacks leverage AI-driven social engineering techniques to manipulate targets with precision. Deepfake disinformation campaigns use AI-generated content to disrupt enemy morale and destabilise societies by spreading false narratives. On the defensive side, AI-driven systems play a crucial role in cyber threat detection by analysing network traffic to identify threats before breaches occur. Automated response mechanisms enable AI-powered security systems to neutralise cyber attacks without human intervention. Moreover, predictive intelligence based on behavioural analysis allows AI to anticipate and mitigate future cyber threats, enhancing overall cyber security resilience.

AI in Surveillance and Reconnaissance. AI-enhanced surveillance systems improve intelligence gathering, target tracking, and situational awareness. Military reconnaissance benefits from AI-powered drones, satellites, and sensor networks, which monitor adversaries and assess battlefield conditions in real time. Satellite intelligence (SATINT) uses AI to analyse satellite imagery and detect military activity, providing strategic insights. Unmanned aerial vehicles (UAVs), equipped with AI capabilities, conduct reconnaissance missions and precisely track enemy movements. Additionally, AI-powered facial and behaviour recognition systems enhance security by identifying potential threats based on biometric analysis.

AI-Enhanced Decision-Making and Command Systems. AI augments military decision-making by analysing complex battlefield scenarios, optimising strategies, and providing commanders with data-driven insights. AI-enhanced decision-making leverages machine learning algorithms to analyse battlefield scenarios, optimise logistics, and predict enemy movements, strengthening command and control operations. Predictive analytics allows AI to anticipate enemy movements and suggest optimal responses, improving strategic planning. Automated resource allocation ensures that AI optimises supply chain logistics and troop deployment efficiently. Lastly, real-time battle simulations enable AI to generate war-gaming scenarios, enhancing military preparedness and strategic readiness.

 

Economic Competitiveness and AI Dominance

Economic power is increasingly tied to AI capabilities. AI enhances productivity, optimises supply chains, and enables rapid decision-making, all contributing to economic growth. Artificial Intelligence (AI) is transforming global economic power structures, redefining industries, and reshaping competition between nations. Countries and corporations that leverage AI to drive productivity, innovation, and automation gain a significant competitive edge in the global economy. Nations leading in AI research and development (R&D) set the standards for global technology markets and influence digital trade regulations. They are setting the stage for economic dominance in the 21st century. Key Areas of AI-Driven Economic Transformation are as follows:-

    • Automation and Productivity Gains. AI-powered robotics and software streamline manufacturing, logistics, and service sectors, boosting efficiency and reducing costs.
    • Big Data and AI Analytics. AI processes vast datasets, enabling businesses to make data-driven decisions, predict market trends, and personalise customer experiences.
    • AI in Financial Services. AI-driven algorithms optimise trading strategies, fraud detection, and risk management, increasing financial sector efficiency.
    • AI in Healthcare and Biotechnology. AI enhances medical diagnostics, drug discovery, and personalised medicine, improving healthcare delivery and economic gains in the biotech industry.
    • Smart Manufacturing and Industry 4.0. AI integrates with IoT (Internet of Things) to create intelligent factories, optimise production processes, and reduce waste.
    • AI’s Role in Shaping Global Trade and Economic Power. The AI revolution is reshaping international trade dynamics, giving AI-dominant economies significant leverage in global markets.
    • AI in Supply Chain Optimisation. AI enhances logistics, demand forecasting, and inventory management, reducing inefficiencies and costs.
    • Competitive Edge in Export Markets. AI-powered automation lowers production costs, making AI-leading countries more competitive in global trade.
    • AI in Trade Negotiations. AI-driven predictive analytics help policymakers and corporations anticipate trade patterns and negotiate better trade deals.
    • AI and Global Economic Disparities. Countries lacking AI infrastructure risk economic marginalisation. Large corporations and AI-leading nations dominate industries, reducing competition and economic diversity. Nations controlling AI-driven data economies gain disproportionate economic power.
    • AI and Labour Market Transformations. AI is reshaping the workforce by automating tasks, displacing traditional jobs, and creating new AI-driven employment opportunities.
    • Job Displacement. AI-driven automation replaces routine and repetitive manufacturing, retail, and customer service jobs.
    • Emergence of AI-Centric Roles. AI creates demand for data scientists, AI engineers, and machine learning specialists.
    • Up Skilling and Reskilling Needs. Governments and corporations must invest in workforce retraining to adapt to AI-driven job market changes.
    • Gig Economy and AI Integration. The gig economy is a labour market characterised by short-term, flexible, and freelance work instead of permanent jobs. It includes independent contractors, temporary workers, and freelancers who typically find work through AI-driven digital platforms. These platforms enable new forms of flexible employment but raise concerns about job security and fair wages.

 

AI and Political Influence

AI is reshaping governance, diplomacy, and social control. Governments use AI-driven surveillance, information campaigns, and predictive analytics to maintain domestic stability and project influence abroad. Artificial Intelligence (AI) rapidly transforms global political landscapes, reshaping governance, diplomacy, and geopolitical power structures.  AI enables governments and political entities to wield significant influence by analysing vast datasets, predicting voter behaviour, and automating propaganda. Its impact extends to election processes, public policy, and international relations, redefining the mechanisms of political power.

Key Areas of AI-Driven Political Influence

    • AI in Political Campaigns. AI-powered tools analyse voter sentiment, craft personalised messaging, and optimise campaign strategies.
    • Social Media Manipulation. AI-driven bots and deepfake technology amplify political narratives, shape public discourse, and manipulate opinions.
    • AI in Policy Decision-Making. AI models provide data-driven insights to optimise governance and public administration.
    • Surveillance and Political Control. Governments use AI for mass surveillance, influencing public behaviour and suppressing dissent.
    • AI in Diplomacy and Geopolitical Strategy. AI enhances foreign policy decisions, intelligence gathering, and crisis management.
    • AI and Electoral Processes. AI has revolutionised election strategies, allowing political entities to predict outcomes, micro-target voters, and optimise campaign engagement. However, it also raises concerns about election security and fairness.
    • Voter Behaviour Analysis. AI assesses demographic trends, political inclinations, and key voter concerns.
    • Automated Political Advertising. AI optimises ad targeting, ensuring messages reach the most receptive audiences.
    • Chatbots for Political Outreach. AI-powered virtual assistants interact with voters, answering questions and reinforcing campaign narratives.
    • Bias in AI Algorithms. AI-driven decision-making can reinforce political biases and favour specific groups.
    • Cyber security Threats. AI-powered hacking and misinformation attacks threaten electoral integrity.
    • AI in Governance and Public Policy. AI transforms governance by enhancing policy-making efficiency, automating administrative tasks, and predicting socio-political trends.
    • Predictive Governance. AI analyses socio-economic data to forecast public needs and policy outcomes.
    • Automated Bureaucracy. AI streamlines governmental operations, reducing inefficiencies in administrative processes.
    • Crisis Management. AI-driven simulations assist policymakers in responding to economic and security crises.
    • AI in International Relations and Diplomacy. AI plays a crucial role in global politics by enhancing diplomatic strategies, intelligence analysis, and conflict resolution efforts.
    • AI-Powered Negotiations. AI-driven models assist diplomats in formulating negotiation strategies.
    • Predictive Conflict Analysis. AI anticipates political conflicts, enabling pre-emptive diplomatic interventions.
    • AI Arms Race. Leading nations compete to develop AI-driven cyber warfare and autonomous defence systems.
    • AI in Soft Power Strategy. Nations leverage AI-driven media to project ideological influence worldwide.

 

AI in Strategic Competition between Nations

The United States and China are at the forefront of AI development, engaging in an AI arms race with significant geopolitical implications. Both nations invest heavily in AI research, infrastructure, and applications to gain technological dominance.  Leading military powers, including the United States, China, and Russia, invest in AI-driven defence programs to secure strategic dominance. AI’s role in military technology has sparked an arms race with implications for global security and power dynamics.

 

The U.S. Approach to AI. The United States adopts a collaborative approach to AI development, leveraging partnerships between the government, universities, and major technology companies like Google, Microsoft, and OpenAI. The Department of Defence prioritises AI integration into defence, intelligence, and cyber capabilities, ensuring national security remains at the forefront of innovation. Regulatory frameworks aim to balance technological advancement with ethical concerns, ensuring AI development aligns with democratic values. The U.S. also strengthens AI research collaborations with allies to maintain a competitive edge over global rivals. The Pentagon invests heavily in AI-powered defence initiatives, including autonomous combat systems such as AI-driven drones and robotic warfare units. Additionally, AI is critical in intelligence analysis, enhancing counterterrorism and national security efforts. Economically, the U.S. fosters AI-driven innovation through public-private partnerships, Silicon Valley startups, and research institutions, ensuring that AI remains a key driver of economic growth. The U.S. also promotes AI governance through regulatory and ethical frameworks to balance innovation with consumer protection.

China’s AI Strategy. China’s AI development is largely state-led, with the government investing heavily in research and innovation to advance its global influence. AI plays a significant role in surveillance and social control, as the Chinese Communist Party employs AI-driven social credit systems and mass surveillance technologies to maintain political stability. AI is also integrated into key economic sectors such as manufacturing, finance, and e-commerce, strengthening China’s position as an economic powerhouse. Militarily, AI is a core component of China’s modernisation strategy, enhancing autonomous warfare systems and cyber capabilities. China has also incorporated AI into its military doctrine for intelligence gathering, cyber warfare, and autonomous combat strategies. The country’s extensive AI-driven surveillance infrastructure further supports military intelligence operations. In its broader economic strategy, China integrates AI into smart cities, digital payments, and urban planning while utilising AI-backed automation to modernise manufacturing and increase global competitiveness.

The European Union’s AI Approach. The European Union takes a regulatory and ethical approach to AI, prioritising governance, data privacy, and consumer protection while fostering technological innovation. The EU is a global leader in AI regulation, ensuring that AI development aligns with democratic values and ethical standards. AI is also widely utilised in sustainability and green technology, helping to optimise energy efficiency and reduce carbon footprints. Additionally, the EU promotes cross-border AI research collaborations, encouraging multinational efforts to advance AI technologies and maintain global competitiveness. The EU aims to set an international standard for responsible AI governance by focusing on ethical AI development and environmental applications.

 

India’s AI Approach and Strategy

India’s AI strategy is driven by a vision of “AI for All,” focusing on leveraging artificial intelligence to enhance economic growth, social development, and global competitiveness. The government recognises AI as a transformative force and has taken significant steps to integrate AI into various sectors. NITI Aayog’s National Strategy for Artificial Intelligence (NSAI) is the foundation for India’s AI roadmap, identifying healthcare, agriculture, education, smart cities, and mobility as priority areas. The government aims to position India as a global AI powerhouse while ensuring equitable access to AI technologies. India’s approach is unique as it balances innovation with ethical considerations, focusing on AI’s potential to address societal challenges such as poverty, healthcare accessibility, and job creation.

One of the key pillars of India’s AI strategy is the IndiaAI Mission, which focuses on building a robust AI ecosystem through public-private partnerships, investments in research and development, and AI-driven entrepreneurship. The government promotes AI startups through initiatives like Startup India and dedicated AI research hubs, ensuring that domestic innovation thrives. The Centre for Artificial Intelligence and Robotics (CAIR) under the Defence Research and Development Organisation (DRDO) plays a crucial role in the defence, cybersecurity, and automation of AI applications. The National Programme on AI, led by NITI Aayog, also works towards creating a data-driven economy where AI-powered solutions enhance governance, business processes, and public services.

The economic impact of AI in India is substantial, with AI projected to add $967 billion to India’s economy by 2035. AI is being integrated into key industries such as manufacturing, fintech, healthcare, and agriculture to boost efficiency and productivity. In manufacturing, AI-powered automation and robotics are helping industries reduce costs and improve precision. The financial sector benefits from AI-driven fraud detection, risk assessment, and customer service automation, enhancing the efficiency of banks and fintech firms. The agricultural sector is also witnessing a transformation with AI-driven predictive analytics, smart irrigation, and precision farming, improving yields and reducing resource wastage.

The Indian government also focuses on ethical AI development and regulation to ensure fairness, transparency, and accountability. The Personal Data Protection Bill aims to regulate data usage, ensuring user privacy and security. India is also active in global AI discussions, advocating for responsible AI governance on international platforms. The government is working on AI policies that promote inclusivity while preventing misuse, such as bias in algorithms and unethical surveillance. AI literacy and workforce skilling are also critical components of India’s AI strategy, with initiatives like FutureSkills Prime and Skill India training professionals in AI, machine learning, and data science to meet industry demands.

With a rapidly growing AI ecosystem, strong government support, and an increasing focus on indigenous AI solutions, India is poised to become a leading player in the global AI landscape. By prioritising innovation, ethical governance, and AI-driven development, India aims to harness AI’s full potential for economic progress, digital transformation, and social impact, ensuring that AI benefits reach all segments of society.

 

Conclusion

The global balance of power is shifting as AI revolutionises military strategy, economic dominance, and political influence. While AI presents opportunities for innovation and growth, it also introduces risks of conflict escalation, economic disparity, and authoritarian expansion. As AI becomes increasingly integral to national security and economic strength, global governance mechanisms must evolve to mitigate AI-driven threats and promote equitable development. The race for AI supremacy will define the geopolitical landscape of the 21st century. Nations that successfully harness AI while maintaining ethical standards and international cooperation will emerge as dominant forces in the new world order.

 

Please Do Comment.

 

1291
Default rating

Please give a thumbs up if you  like The Post?

For regular updates, please register your email here:-

Subscribe

 

 

References and credits

To all the online sites and channels.

References:-

  1. Bendett, Samuel & Kania, Elsa (2019). Battlefield Singularity: Artificial Intelligence, Military Revolution, and China’s Future Military Power. Center for a New American Security.
  1. Horowitz, Michael C. (2019). AI and the Future of War: The Risks and Benefits of Military AI Systems. Texas National Security Review.
  1. Geist, Edward (2020). How AI Could Destabilize Nuclear Deterrence. RAND Corporation.
  1. Sayler, Kelley M. (2021). Artificial Intelligence and National Security. Congressional Research Service Report.
  1. Lee, Kai-Fu (2018). AI Superpowers: China, Silicon Valley, and the New World Order. Houghton Mifflin Harcourt.
  1. Agrawal, Ajay, Gans, Joshua, & Goldfarb, Avi (2018). Prediction Machines: The Simple Economics of Artificial Intelligence. Harvard Business Review Press.
  1. Schmidt, Eric & Rosenberg, Jonathan (2021). The Age of AI: And Our Human Future. Little, Brown and Company.
  1. Feldman, P. J. (2021). AI and the Economic Balance of Power: Competing for the AI Edge. Center for Strategic and International Studies (CSIS).
  1. Hajian, Sara, Bonchi, Francesco, & Castillo, Carlos (2016). Algorithmic Bias: Detection, Influence, and Mitigation in AI-based Decision-Making Systems. ACM Transactions on Knowledge Discovery from Data.
  1. West, Darrell M. (2018). The Future of Work: Robots, AI, and Automation. Brookings Institution Press.
  1. Helbing, Dirk (2021). The Digital Coup: How AI and Big Data Reshape Political Power. Springer.
  1. Taddeo, Mariarosaria & Floridi, Luciano (2018). Regulating Artificial Intelligence and Big Data: A Framework for Digital Sovereignty. Ethics and Information Technology.
  1. Brundage, Miles, Avin, Shahar, et al. (2018). The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation. University of Oxford.
  1. Russell, Stuart (2019). Human Compatible: Artificial Intelligence and the Problem of Control. Viking.
  1. Floridi, Luciano (2020). The Ethics of Artificial Intelligence in International Affairs. AI & Society Journal.
  1. Rahwan, Iyad et al. (2019). Machine Behavior: Understanding the AI-Driven World. Nature.
  1. United Nations Office for Disarmament Affairs (UNODA) (2021). Artificial Intelligence and the Challenges of Global Governance.

 

Disclaimer:

Information and data included in the blog are for educational & non-commercial purposes only and have been carefully adapted, excerpted, or edited from reliable and accurate sources. All copyrighted material belongs to respective owners and is provided only for wider dissemination.

600: RISE OF COMBAT DRONES: IMPLICATIONS FOR TRADITIONAL AIRPOWER

 

The rapid advancement of unmanned aerial vehicles (UAVs), known as drones, has revolutionised modern warfare. Once primarily used for reconnaissance and surveillance, drones have evolved into sophisticated combat platforms capable of executing precision strikes, electronic warfare, and logistics support. The proliferation of combat drones challenges the dominance of traditional airpower by altering strategic doctrines, operational tactics, and force structures. This article explores the rise of combat drones and their profound implications for conventional airpower.

 

Armed variants of the Predator, such as the MQ-1 and MQ-9 Reaper, demonstrated the feasibility of unmanned precision strikes, ushering in a new era of aerial warfare. Since then, countries such as China, Russia, Turkey, and Iran have rapidly developed their combat drone capabilities. Technological advancements in artificial intelligence (AI), sensor miniaturisation, and autonomous navigation have expanded combat drones’ capabilities. Modern drones can operate autonomously, engage in complex swarm tactics (where multiple drones coordinate their actions in real-time), and integrate with network-centric warfare systems. A list of major combat drones is appended.

 

Key Advantages of Combat Drones

 

Combat drones, or unmanned aerial vehicles (UAVs), have rapidly transformed modern military operations. They offer a range of significant advantages that enhance strategic effectiveness and operational efficiency. These advantages are critical for established military powers and smaller nations looking to improve their defence capabilities.

 

Cost-Effectiveness. One of the most prominent advantages of combat drones is their cost-effectiveness. Traditional manned aircraft, such as fighter jets and bombers, involve substantial financial investments in production, maintenance, fuel, and the continuous training of pilots. These high operational and training costs make them financially burdensome, especially for nations with smaller defence budgets. Combat drones, in contrast, are much more affordable to produce, operate, and maintain. This makes drones an attractive option for military forces seeking advanced technology without the prohibitive expenses of traditional aviation.

 

Reduced Risk to Human Life. The ability to operate drones remotely means that military personnel are not physically present in the combat environment, which significantly reduces the risk to human life. Manned aircraft often place pilots in high-risk situations, such as hostile airspace, where the threat of anti-aircraft weapons, enemy fighters, or surface-to-air missiles is constant. This feature makes drones especially valuable for missions in high-risk zones, such as counterterrorism operations, surveillance of enemy positions, or strikes against heavily fortified targets. By minimising human casualties, drones ensure mission sustainability and allow forces to continue operations with fewer limitations.

 

Persistent Surveillance and Endurance. Unlike manned aircraft with limited flight durations due to fuel constraints, combat drones can remain airborne for extended periods, often hours or even days. This endurance allows drones to conduct continuous intelligence, surveillance, and reconnaissance (ISR) operations over extended periods without returning to the base for fuel or rest. Drones can loiter over targets for extended periods, tracking enemy movements, gathering intelligence, and relaying data to commanders. This constant flow of information improves situational awareness and allows military forces to remain proactive rather than reactive in their operations.

 

Precision Strike Capabilities. Modern combat drones are equipped with advanced targeting systems, enabling them to conduct precise strikes with high accuracy. This precision is made possible through advanced sensors, cameras, and laser-guided munitions, which enable drones to accurately identify and engage enemy targets such as vehicles, facilities, or personnel, even in complex environments. Precision is critical in counterinsurgency operations, where avoiding collateral damage is crucial for maintaining local support and reducing the risk of civilian backlash.

 

Operational Flexibility. Another significant advantage of combat drones is their operational flexibility. Drones are highly versatile and can be deployed in various roles, from surveillance and reconnaissance to electronic warfare and decoy operations. They can serve as support platforms for ground troops, relaying intelligence, providing airstrikes, or conducting search and rescue missions. Drones can also be used in electronic warfare, disrupting enemy communication systems or jamming radar signals. Additionally, drones can serve as decoys, drawing enemy fire or confusing adversaries about the location of critical assets. This adaptability makes drones valuable assets in numerous military operations, enhancing their utility in diverse combat scenarios.

 

Drone Usage in Recent Conflicts

 

Nagorno-Karabakh Conflict. This conflict saw extensive use of drones by Azerbaijan, which utilised both tactical drones for surveillance and loitering munitions for precision strikes. Azerbaijan’s use of Turkish-made Bayraktar TB2 drones (a medium-altitude, long-endurance tactical unmanned aerial vehicle), alongside Israeli-made drones, played a crucial role in undermining Armenian defensive positions and disrupting supply lines. Drones provided real-time intelligence and executed targeted airstrikes, significantly impacting the battlefield dynamics. The success of drones in this conflict highlighted their role in modern warfare, showcasing their effectiveness in both reconnaissance and offensive operations and marking a shift in how airpower is utilised in regional conflicts.

 

Ukraine-Russia Conflict. In the ongoing Ukraine-Russia conflict, drones have become pivotal for both sides. Ukraine has relied heavily on drones for intelligence, surveillance, reconnaissance (ISR), and precision strikes. The use of Turkish-made Bayraktar drones has garnered international attention due to their success in targeting Russian artillery and supply lines. Russia, in turn, has deployed both reconnaissance drones and loitering munitions such as the Lancet drone. Drones are crucial in this conflict, offering both tactical advantages in real-time battlefield awareness and as weapons of deterrence. The conflict exemplifies how UAVs transform modern armies conducting warfare on the ground and in the air.

 

Israel-Hamas War. During the Israel-Hamas conflict, drones played a significant role in both offensive and defensive strategies. Israel utilised advanced unmanned aerial vehicles (UAVs) like the Hermes 450 and the Heron TP for surveillance, reconnaissance, and precision strikes, targeting Hamas military infrastructure, leaders, and weapon caches. Drones enable real-time intelligence, improving the effectiveness of airstrikes while minimising collateral damage. Hamas also deployed drones, often for reconnaissance and surveillance, but with increasing sophistication in attacking Israeli targets. The conflict highlighted the growing reliance on drones for modern warfare, as they offer cost-effective, high-precision capabilities in asymmetric conflicts.

 

U.S. Counterterrorism Operations. Combat drones have been central to U.S. counterterrorism operations, particularly in regions like the Middle East and North Africa. The U.S. military has employed drones for targeted strikes against high-value targets, including terrorist leaders and militants affiliated with groups like Al-Qaeda and ISIS. Drones such as the MQ-9 Reaper and MQ-1 Predator have provided surveillance and precision strike capabilities without the risk of piloting manned aircraft in hostile environments. These operations, while effective in neutralising threats, have raised ethical and legal concerns about civilian casualties, sovereignty violations, and the long-term strategic consequences of drone warfare.

 

Future Trends in Drone Warfare

 

AI-Driven Autonomy. AI-driven autonomy in drone warfare will revolutionise decision-making, enabling UAVs to analyse data and execute missions independently. This reduces human intervention, enhances speed, and improves operational efficiency, allowing drones to make real-time tactical decisions and adapt to changing battlefield dynamics without relying on constant human oversight.

 

Swarm Tactics. Swarm tactics involve deploying many drones that can communicate and collaborate autonomously to overwhelm targets. This approach maximises impact, confuses enemies, and complicates defence strategies. Swarms can be used for offensive operations, like saturation attacks, and defensive roles, such as countering incoming threats in coordinated formations.

 

Hybrid Manned-Unmanned Operations. Hybrid manned-unmanned operations combine human decision-making with autonomous drone capabilities, enhancing flexibility and situational awareness. Human pilots can control UAVs while receiving support from AI systems that automate data processing and mission planning. This synergy allows for optimal control and strategic execution while reducing the cognitive burden on operators.

 

Miniaturisation and Stealth. Miniaturisation and stealth technologies are enhancing drones’ ability to operate undetected. Smaller, quieter UAVs with reduced radar signatures can infiltrate enemy defences, gather intelligence, or carry out strikes without being easily intercepted. These advances improve tactical flexibility and extend the operational range of drones in contested environments.

 

Implications of Combat Drones on Traditional Airpower

 

The rapid advancement and proliferation of combat drones, also known as unmanned combat aerial vehicles (UCAVs), have fundamentally reshaped the landscape of air warfare. The increasing integration of unmanned systems has now disrupted what was once a domain exclusively dominated by manned fighter jets, strategic bombers, and attack aircraft. While traditional airpower remains indispensable in major military operations, combat drones introduce new doctrines, alter strategic calculations, and challenge long-held assumptions about air superiority. From cost-effectiveness to survivability, from force projection to counter-air missions, the implications of drones on traditional airpower are profound and multifaceted.

 

Changes in Force Structuring. This cost-effectiveness has allowed major and minor powers to expand their air combat capabilities without requiring massive budgets. Countries that could not previously project significant airpower can now field substantial drone fleets, effectively democratising access to aerial warfare. Moreover, drone attrition is far more acceptable than the loss of a piloted aircraft, further changing the strategic calculus. Traditional airpower relies on highly trained pilots, whose combat loss affects military effectiveness and carries significant political and moral weight. The expendability of drones means that military commanders can take more significant risks, leading to more aggressive and flexible operational doctrines.

 

Changing the Nature of Air Superiority and Aerial Combat. The rise of combat drones challenges traditional definitions of air superiority. Historically, air superiority was determined by the ability of manned fighter aircraft to establish dominance over enemy airspace through superior manoeuvrability, advanced sensors, and beyond-visual-range (BVR) engagements. However, drones are now increasingly capable of carrying out air-to-air missions, raising questions about the future role of manned aircraft in achieving air superiority. For example, the Loyal Wingman concept, which pairs autonomous drones with manned fighter jets, represents a hybrid traditional and drone-based airpower model. In this setup, manned aircraft act as command-and-control nodes while drones perform high-risk tasks such as dogfighting, electronic warfare, and decoy operations. Similarly, China is developing drones like the FH-97, modelled after the U.S. XQ-58 Valkyrie, which can operate as autonomous wingmen to piloted aircraft.

 

Changes in Traditional Fighter Combat Tactics. Small, agile drones can operate in swarms, overwhelming enemy defences in ways that traditional aircraft cannot counter easily. Countries such as China and Russia are actively developing swarm drone technology that could neutralise enemy air defences and fighter squadrons by sheer numbers. In such a scenario, traditional air combat tactics based on individual or squadron engagements may become obsolete, replaced by algorithm-driven swarm warfare where AI-driven drones execute complex attack patterns beyond human reaction times.

 

Evolution of Air Defence Systems. The rise of combat drones has forced rapid changes in air defence systems. Traditional air defences, such as surface-to-air missile (SAM) systems, were designed to counter high-speed, high-altitude threats from fighter jets and bombers. However, drones present an entirely different challenge, as they are often smaller, slower, and fly at lower altitudes, making them difficult for conventional radar systems to detect and track. Countries have responded by integrating counter-drone capabilities into their air defence networks. Integrated air defence systems, such as Israel’s Iron Dome and Russia’s Pantsir-S1, have been adapted to target drones with high-precision missiles and rapid-fire auto-cannons. Additionally, electronic warfare (EW) has emerged as a crucial element in countering drone threats. Many modern air defence systems now incorporate jamming and spoofing capabilities to disrupt combat drones’ communications and GPS navigation, rendering them ineffective. Despite these adaptations, drones are still proving to be highly disruptive. The 2020 Nagorno-Karabakh conflict demonstrated how drones could systematically dismantle traditional air defences. Azerbaijani forces used Turkish and Israeli drones to destroy Armenian SAM sites, rendering their conventional air defence network ineffective. This shift suggests that air defence will increasingly rely on layered, AI-driven networks capable of simultaneously countering manned and unmanned threats in future conflicts.

 

Alteration in Roles and Tasks. Traditional airpower doctrine has been built around fighter jets for air superiority, strategic bombers for deep penetration strikes, and Battlefield air support (BAS) aircraft for ground engagements. However, combat drones are altering these roles in significant ways. In battlefield air support missions, drones have already proven their effectiveness. The MQ-9 Reaper, for example, has been widely used by the U.S. military for BAS missions in Afghanistan, Iraq, and Syria. Unlike traditional BAS aircraft requiring significant logistics and support, drones can loiter over a battlefield for extended periods, providing persistent surveillance and rapid strike capability. This persistence gives ground commanders real-time intelligence and strike options that traditional aircraft cannot match. In strategic bombing missions, drones are also beginning to make their mark. While heavy bombers like the B-52 or B-2 Spirit lack the payload capacity, swarming drone tactics could compensate by overwhelming enemy defences with multiple smaller precision strikes. China’s WZ-8 high-speed reconnaissance drone and the U.S. RQ-180 stealth drone suggest that drones may soon take over many roles traditionally assigned to strategic bombers.

 

Shift in Human Role. Additionally, the increasing use of AI in drone operations is shifting the human role in air warfare. While traditional airpower relies on human decision-making, AI-driven drones can process vast amounts of battlefield data in real time, react faster than human pilots, and execute missions with minimal human intervention. This shift raises ethical and operational questions about the future of autonomous air warfare, particularly in conflicts where rapid decision-making can mean the difference between victory and defeat.

 

The Future of Manned Aircraft in a Drone-Dominated Battlefield. While drones are rapidly transforming air warfare, it is unlikely that traditional manned aircraft will become obsolete in the near future. Instead, airpower will likely evolve into a hybrid model where manned and unmanned platforms work together. For example, the U.S. Air Force’s Next-Generation Air Dominance (NGAD) program envisions a future where advanced fighter jets operate alongside AI-driven drones in a coordinated battle network.

 

Evolutionary Process. Stealth fighter jets will still be critical for high-end air combat against technologically advanced adversaries. While drones offer many advantages, they still face limitations regarding autonomy, electronic warfare vulnerabilities, and adaptability in complex combat scenarios. Human pilots bring strategic thinking, adaptability, and situational awareness that AI-driven drones cannot fully replicate. That said, as AI and drone technology continue to improve, we may eventually see a shift where manned fighters become command platforms rather than frontline combatants. Future air battles may be fought with autonomous drone swarms controlled by human operators from standoff distances, reducing the need for pilots to engage in direct combat.

 

Conclusion

The rise of combat drones represents a paradigm shift in modern warfare, challenging the supremacy of traditional air power. While manned aircraft will likely remain relevant for the foreseeable future, their role is shifting toward command and control rather than direct engagement. As drone technology continues to advance, the future of air warfare will likely be defined not by individual dogfights but by networks of autonomous systems operating in concert with traditional manned platforms. In this evolving landscape, the key to maintaining air dominance will be successfully integrating drones into traditional airpower frameworks, leveraging human and artificial intelligence to maximise combat effectiveness. 

 

The increasing integration of drones necessitates a revaluation of military doctrines, investment priorities, and force structures. The future of air warfare lies in a balanced approach that leverages the complementary strengths of both manned and unmanned systems.

 

Please Do Comment.

 

1291
Default rating

Please give a thumbs up if you  like The Post?

 

For regular updates, please register your email here:-

Subscribe

 

References and credits

To all the online sites and channels.

References:-

  1. Boyle, M. J. (2015). “The Drone Age: How Drone Technology Will Change War and Peace.” International Affairs, 91(1), 67-84.
  1. Horowitz, M. C., & Fuhrmann, M. (2018). “Droning On: Explaining the Proliferation of Unmanned Aerial Vehicles.” International Security, 43(2), 7-47.
  1. Zenko, M. (2010). “The Proliferation of Drones.” Council on Foreign Relations Report.
  1. Byman, D. (2013). “Why Drones Work: The Case for Washington’s Weapon of Choice.” Foreign Affairs, 92(4), 32-43.
  1. Gartzke, E., & Lindsay, J. R. (2019). “The Influence of Drones on the Nature of Warfare.” Security Studies, 28(2), 245-281.
  1. Scharre, P. (2018). “Drones and the Future of Warfare.” Center for a New American Security (CNAS).
  2. Mehta, A. (2021). “How China’s Drone Strategy Is Shaping the Global Military Balance.” Defence News.
  1. Heginbotham, E. (2019). “The Role of Unmanned Combat Systems in the Indo-Pacific.” War on the Rocks.

 

  1. Johnson, E. (2020). The Integration of UAVs in Modern Air Combat: A Strategic Perspective. [Doctoral dissertation, King’s College London].
  1. Thompson, J. (2018). The Changing Face of Aerial Combat: Drones Versus Manned Aircraft. [Master’s thesis, U.S. Naval War College].
  1. Indian Ministry of Defence. (2022). Drone Policy and Integration in the Indian Armed Forces.
  1. RAND Corporation. (2018). Future Unmanned Aircraft Systems: A Comparative Assessment.
  1. Stockholm International Peace Research Institute (SIPRI). (2021). The Impact of Military UAVs on Contemporary Warfare.
  1. Center for Strategic and International Studies (CSIS). (2022). The Future of Air Dominance: Evaluating the Role of Combat Drones.

 

Disclaimer:

Information and data included in the blog are for educational & non-commercial purposes only and have been carefully adapted, excerpted, or edited from reliable and accurate sources. All copyrighted material belongs to respective owners and is provided only for wider dissemination.

 

English हिंदी