626: ARTIFICIAL INTELLIGENCE IN MODERN WARFARE: OPPORTUNITIES AND CHALLENGES

 

My Article was published on the Indus International Research Foundation Website on 20 Mar 25.

 

In the modern battlefield, timely and accurate information is paramount. Artificial Intelligence (AI) has emerged as a transformative force in various sectors, and its integration into the military is particularly notable. AI’s integration into strategic and tactical decision-making transforms military operations by enabling leaders to anticipate potential threats, optimise resource allocation, and make faster, data-driven decisions. AI rapidly becomes a core tool for enhancing military decision-making, revolutionising strategies, and operational efficiency. It reshapes how military leaders approach battlefield tactics, logistics, and strategic planning through rapid data processing, sophisticated simulations, and predictive analysis. As armed forces worldwide increasingly adopt AI technologies, the implications for strategy, tactics, and operational efficiency are profound. While AI offers unprecedented benefits, its integration in military contexts introduces ethical concerns and strategic challenges that are central to its future role.

 

The Evolution of AI in Military Applications. The military’s interest in AI is not recent; it dates back several decades. The initial exploration of AI technologies in military contexts began in the 1950s and 1960s, focusing on simulations and rudimentary decision support systems. Over the years, advancements in machine learning, data analytics, and computational power have dramatically enhanced the capabilities of AI systems. In the 1960s, AI research focused on symbolic reasoning and game theory, with early applications in strategic simulations. The Cold War era spurred investments in AI research as nations sought technological advantages. The Gulf War in the early 1990s highlighted the importance of information superiority. AI technologies began integrating command and control systems, enabling real-time data analysis and enhanced situational awareness. The development of drones and unmanned systems marked a significant shift, with AI increasingly applied to operational contexts. Today, AI applications in the military encompass various areas, including autonomous vehicles, predictive analytics, intelligence gathering, and combat simulations. Countries like the United States, China, and Russia are investing heavily in AI research to enhance their military capabilities.

 

Benefits of AI in Military. Integrating AI into the military offers significant benefits, including increased efficiency, accuracy, and situational awareness. AI technologies streamline processes and enhance operational efficiency. By automating routine tasks, military personnel can focus on strategic planning and execution. AI systems improve the accuracy of military operations by providing data-driven insights that reduce human error. Analysing data in real time enhances decision-making, particularly in high-stakes environments. AI technologies improve situational awareness by integrating data from various sources, providing commanders with a comprehensive understanding of the battlefield. These practical advantages underscore the importance of AI in military decision-making.

 

AI in Military Contexts.

AI in the military can be broadly classified as data analytics, autonomous systems, decision support, and cyber defence. Its ability to quickly process large volumes of data and identify patterns has made AI a powerful tool for intelligence analysis, operational planning, and logistics optimisation.

 

Data Analytics and ISR (Intelligence, Surveillance, and Reconnaissance). AI-driven data analytics enhance ISR capabilities by analysing satellite images, social media data, intercepted communications, and more to identify potential threats. AI systems analyse real-time ISR data, recognising patterns that may indicate enemy movements or hidden threats. Machine learning models trained on historical data help predict potential adversarial actions, giving military leaders a tactical advantage. For example, deep learning models analyse satellite and drone imagery, identifying military installations, troop movements, or equipment locations with minimal human input. By providing commanders with this intelligence in near real-time, AI reduces the time needed to make informed tactical decisions.

 

Simulation and War Gaming. AI-powered simulations are invaluable for testing different scenarios in war gaming exercises. These simulations incorporate diverse factors, including adversary capabilities, weather, and terrain, to provide a realistic projection of possible outcomes. Such tools allow leaders to plan and rehearse operations, identify weaknesses, and refine strategies. AI simulations support large-scale strategic planning and small-unit tactics, helping teams understand the consequences of their actions before taking them on the battlefield. War gaming simulations also train and prepare soldiers and officers for complex and high-stress situations through realistic, AI-generated scenarios.

 

Predictive Maintenance and Logistics Optimisation. AI enhances logistics by predicting when vehicles or other equipment may need maintenance, ensuring that military assets are operational when required. Predictive maintenance uses AI to analyse sensor data from equipment, forecasting failures before they happen and reducing operational downtime. For instance, AI predicts tank engine wear or helicopter rotor fatigue based on operational data, allowing maintenance teams to perform pre-emptive repairs, which can be critical in conflict scenarios. This application is more efficient and potentially life-saving, a testament to the significant role AI plays in military operations.

 

Autonomous and Semi-Autonomous Systems. Autonomous systems driven by AI are reshaping the modern battlefield. Drones, ground robots, and other unmanned systems operate with varying degrees of autonomy, performing ISR, transport, and combat tasks that traditionally require human soldiers. These systems extend operational capabilities, allowing military forces to engage in high-risk missions with minimal direct exposure to human personnel.

 

Unmanned Aerial and Ground Vehicles. AI enables drones and unmanned ground vehicles (UGVs) to operate autonomously in complex environments. Equipped with computer vision and machine learning algorithms, these systems navigate hostile terrain, conduct reconnaissance, and sometimes engage targets without direct human intervention. These AI-driven vehicles can also perform multi-mission roles, often shifting from reconnaissance to combat, depending on mission needs. This flexibility allows commanders to adapt real-time strategies, using the same resources for multiple purposes, improving efficiency, and extending operational reach.

 

Swarm Technology. Swarm technology, in which groups of autonomous systems work collaboratively, represents a new frontier in military robotics. AI allows swarms of drones to communicate, make collective decisions, and adapt to changing environments, enabling them to overwhelm defences, conduct coordinated surveillance, and jam enemy signals. In a combat situation, drone swarms could confuse adversary radar systems or execute diversionary tactics, creating openings for human-operated forces. This level of coordination and adaptability would be almost impossible without AI, which processes environmental data and adjusts the swarm’s behaviour in real-time.

 

Autonomous Combat Systems and the Kill Chain. One of the most controversial uses of AI in the military is automating the “kill chain”, the sequence of decisions from target identification to engagement. While current norms generally require human oversight, there is a growing interest in developing systems that can autonomously engage targets under specific circumstances. This application raises profound ethical and legal questions, as fully autonomous combat systems could operate beyond human control, making decisions with lethal consequences. Concerns over accountability, discrimination between combatants and civilians, and the potential for accidental escalation of conflicts are central to debates on the future of such technologies.

 

Cyber Defence and Information Warfare. Cyber warfare is a crucial area where AI aids in protecting military assets from digital threats. With its ability to rapidly detect anomalies, AI helps military cyber teams identify potential intrusions and respond to cyber attacks, significantly improving defence against increasingly sophisticated adversaries.

 

Threat Detection and Response. AI-powered systems monitor military networks, identifying unusual activities and rapidly flagging potential threats. These systems can differentiate between normal and malicious behaviour by analysing network patterns, user behaviour, and system performance. Machine learning models constantly adapt to new tactics and techniques cyber adversaries use, making them crucial in mitigating advanced persistent threats (APTs). AI also plays a role in “active defence,” where it identifies an intruder and takes countermeasures, potentially isolating affected systems or misleading the adversary. Such rapid response mechanisms enhance cyber security in ways that are challenging to achieve with human teams alone.

 

Information Warfare and Disinformation Detection. Information warfare has become a critical aspect of military operations, with adversaries frequently spreading misinformation to undermine morale and erode public trust. AI-driven tools can identify disinformation patterns by analysing social media and other communications platforms and flagging content designed to mislead or destabilise. AI’s ability to monitor, detect, and counteract information attacks helps protect soldiers and civilians from psychological manipulation while countering adversarial narratives that aim to weaken resolve or incite division.

 

Decision Support Systems (DSS). AI-based DSS provides commanders with actionable insights, predicting adversary behaviour and logistics needs and suggesting strategies to address dynamic battlefield conditions. AI’s benefits in military decision-making are substantial, enhancing speed, accuracy, and operational readiness. AI allows faster decision-making by processing information and identifying threats quicker than human operators. This speed is critical in time-sensitive combat situations where delayed responses can mean the difference between success and failure.

 

AI-enabled Systems.

Project Maven. Initiated by the U.S. Department of Defence in 2017, Project Maven aims to leverage AI to enhance the military’s ability to analyse drone footage and other visual data. By employing machine learning algorithms, Project Maven can automatically identify objects and activities in video feeds, significantly improving the speed and accuracy of intelligence analysis. According to the DoD, “Project Maven enables the Department of Defence to leverage AI and machine learning to make sense of vast amounts of data.” This project exemplifies the practical application of AI in military operations, transforming how intelligence is gathered and analysed.

 

Aegis Combat System. The Aegis Combat System is an advanced naval weapons system used by the U.S. Navy and allied forces. It employs AI to enhance threat detection, tracking, and engagement capabilities. Aegis integrates data from multiple sensors to provide real-time situational awareness, enabling rapid decision-making in combat scenarios.

 

Lethal Autonomous Weapons Systems (LAWS) are a controversial application of AI in military operations. These systems can select and engage targets without human intervention, raising ethical and legal concerns. Proponents argue that LAWS can reduce risks to human soldiers and increase operational efficiency. However, critics warn that lacking human oversight in lethal decision-making could lead to unintended consequences. The United Nations has called for discussions on regulating autonomous weapons, emphasising the need for human accountability in such systems.

 

Challenges and Concerns.

Implementing AI in the military involves several practical challenges, including ethical concerns, data quality, adversarial threats, and potential over-reliance on technology. While AI presents significant opportunities for military decision-making, several challenges and ethical considerations must be addressed.

 

Data Privacy and Security. Integrating AI into military operations raises concerns about data privacy and security. Collecting and analysing vast amounts of data, including personal information, can lead to potential misuse or unauthorised access. Ensuring data integrity and protecting sensitive information are critical challenges for military organisations. Cyber security measures must be robust to prevent adversaries from exploiting vulnerabilities in AI systems.

 

Data Quality and Integration. AI systems require high-quality, structured data to make accurate decisions. Military data sources are often fragmented, making integrating and ensuring data quality difficult. If AI systems operate on poor or incomplete data, they may produce incorrect or unreliable decisions, which could have dire consequences.

 

Reliability and Trust. AI systems are not infallible and can be prone to errors, particularly in complex and dynamic environments. Building trust in AI systems is crucial for military personnel to rely on them in high-stakes situations. Ensuring the reliability and accuracy of AI algorithms requires continuous testing and validation. Military organisations must establish protocols to assess the performance of AI systems before deployment.

 

Ethical Implications, Accountability and Responsibility. Despite its benefits, AI in military decision-making raises moral and legal concerns, particularly regarding autonomy, accountability, and adherence to international laws. The potential for machines to make life-and-death decisions without human intervention raises concerns about accountability and moral responsibility. Accountability can be ambiguous in AI-driven operations. If an autonomous weapon causes unintended harm, it is often unclear whether responsibility falls on the AI developer, the commanding officer, or the operator. Establishing clear accountability is essential to prevent the misuse of AI technologies and to ensure legal and ethical conduct in military operations. The moral implications of using AI in warfare have led to calls for regulatory frameworks to govern the development and deployment of autonomous systems. Experts argue that human oversight is essential to maintain ethical standards in military operations.

 

Compliance with International Law. Many AI applications in warfare, such as autonomous drones and weaponised robots, may challenge existing international treaties, including the Geneva Conventions, which govern the conduct of war and protect non-combatants. The potential for autonomous systems to make lethal decisions without human oversight raises questions about compliance with these international norms.

 

Adversarial AI and Deception.  The potential for adversaries to exploit AI technologies poses a significant threat to military operations. Hostile entities can exploit cyber security vulnerabilities in AI systems to disrupt operations or manipulate data. For example, an adversary might feed false data into an AI system or use techniques to mislead autonomous systems, potentially leading to harmful or counterproductive decisions. Military organisations must develop counter-AI strategies and robust cyber security measures to safeguard their systems from adversarial threats. Collaboration with industry and academia can enhance resilience against emerging threats.

 

Dependence on Technology and Operational Vulnerability. Over-reliance on AI could create vulnerabilities, particularly if these systems are compromised or disabled in combat. If soldiers and commanders become too dependent on AI-based decision support, they may lack the necessary skills or resilience to operate without these tools in high-stress situations.

 

Future of AI in Military Decision-Making

As AI technology evolves, its role in military decision-making will expand. Several key areas warrant attention for future developments. The trajectory of AI in military decision-making suggests further integration, with increased autonomy in combat systems, more sophisticated predictive capabilities, and enhanced collaboration between human and AI decision-makers. However, the future of AI in military contexts will depend on addressing current ethical concerns, refining regulatory frameworks, and developing global agreements on autonomous weaponry.

 

Ongoing Research and Development. Continued research and development in AI technologies will be critical for addressing military applications’ challenges and ethical implications. Collaboration between military organisations, academia, and industry can drive innovation. Governments and defence agencies should invest in research programs exploring AI’s ethical, operational, and technological aspects in military contexts. This approach will ensure that AI systems are developed responsibly and effectively.

 

Human-AI Teaming Models and Collaboration. The future of military decision-making will likely involve greater collaboration between humans and AI systems. AI can augment human decision-making by providing data-driven insights, while human operators can offer contextual understanding and ethical considerations. This human-AI teaming approach leverages AI’s data processing and pattern recognition strengths while preserving human oversight and moral judgment. Developing effective collaboration models will be crucial for maximising AI’s benefits in military operations.

 

Advanced Training and Adaptation. As AI tools evolve, military training will adapt to integrate AI-based decision-making into officer training and war gaming exercises. Future military professionals must understand AI’s capabilities and limitations to ensure they can use these tools effectively and ethically. Enhanced training programs are essential to prepare military personnel to integrate AI technologies. Training should focus on developing skills in data analysis, AI ethics, and human-machine collaboration.

 

Regulatory Frameworks. The rapid advancement of AI technologies necessitates the establishment of regulatory frameworks to govern their use in military operations. Such frameworks should address ethical considerations, accountability, and oversight in autonomous systems. International cooperation is essential for developing norms and standards regarding the use of AI in warfare. Establishing treaties or agreements can help mitigate the risks of autonomous weapons and promote responsible AI use.

 

International Collaboration and AI Arms Control. International collaboration and regulation will be essential to manage the risks associated with military AI. Nations may need to negotiate treaties similar to those that govern nuclear and chemical weapons, establishing protocols and limits for AI-driven autonomous weapons.

 

Conclusion

 Integrating AI into military decision-making reshapes how armed forces operate, strategise, and engage in combat. While AI offers significant benefits regarding efficiency, accuracy, and situational awareness, it also raises significant ethical and operational challenges. As military organisations continue to explore AI technologies, addressing these concerns will ensure responsible and effective use in the field. Balancing AI’s benefits with the principles of international law and ethical warfare will be essential to shaping a future where AI is a responsible and effective partner in military decision-making. The future of military decision-making will depend on finding the right balance between leveraging AI’s capabilities and maintaining human oversight and accountability. As AI technology advances, ongoing research, regulation, and collaboration will ensure that its deployment in military contexts aligns with humanity’s broader goals and values.

Please Do Comment.

 

1118
Default rating

Please give a thumbs up if you  like The Post?

 

For regular updates, please register your email here:-

Subscribe

 

 

References and credits

To all the online sites and channels.

Pics Courtesy: Internet

Disclaimer:

Information and data included in the blog are for educational & non-commercial purposes only and have been carefully adapted, excerpted, or edited from reliable and accurate sources. All copyrighted material belongs to respective owners and is provided only for wider dissemination.

 

 

References: –

  1. U.S. Department of Defence. (2017). Project Maven. Retrieved from DoD Website.
  1. Richardson, J. M. (2016). “The Future of Naval Warfare.” Proceedings of the U.S. Naval Institute, 142(5), 24-30.
  1. U.S. Army. (2019). Army Artificial Intelligence Strategy. Retrieved from Army.mil.
  1. Scharre, P. (2018). Army of None: Autonomous Weapons and the Future of War. New York: W.W. Norton & Company.
  1. United Nations. (2019). Report of the Secretary-General on Lethal Autonomous Weapons Systems. Retrieved from UN Website.
  1. Hodge, N. (2017). “The Impact of Artificial Intelligence on Military Strategy.” Journal of Military Ethics, 16(4), 303-319.
  1. Defence Advanced Research Projects Agency. (2021). AI Next Campaign. Retrieved from DARPA.mil.
  1. Lin, P. (2016). “Why Ethics Matters for Autonomous Cars.” Autonomously Driven Cars: Ethical Implications of the Technology. Washington, D.C.: The Brookings Institution.
  1. Altmann, J., & Sauer, F. (2017). “Regulating Artificial Intelligence in Warfare.” The International Journal of Human Rights, 21(2), 147-161.
  1. Cebrowski, A. K., & Gartska, J. J. (1998). “Network-Centric Warfare: Its Origin and Future.” U.S. Naval Institute Proceedings, 124(1), 28-35.

625: F-35 DILEMMA REVISITED: BALANCING AFFORDABILITY, CAPABILITY AND TRADE-OFFS.

 

My Article published on the EurasianTimes Website on 19 Mar 25.

 

In an interesting development, Portugal, Canada, and Germany are hesitating over the F-35. These developments can be both a challenge and an opportunity for India, whether India should jump into the fray and take the risk or stay away.

 

Indian Worries. India’s worries include operational and maintenance challenges, US policy uncertainty and technology transfer issues. Countries reconsidering their F-35 purchases usually cite concerns about high operational costs, maintenance complexities, and reliability issues. If a country like Canada, with a strong NATO supply chain, has problems, India, without an established F-35 ecosystem, could face serious logistics nightmares. India has historically struggled with restrictive American defence deals (e.g., CAATSA concerns with Russia). If Canada and Portugal are reconsidering under U.S. influence, India’s potential F-35 deal might come with diplomatic strings attached. Moreover, the U.S. is unlikely to share deep tech integration rights.

 

Opportunity. On the bright side, the cancellations by these countries could open up production slots, potentially leading to expedited deliveries if India proceeds with an F-35 deal. Furthermore, under these circumstances, Lockheed Martin may be more accommodating in pricing or support agreements with India. A limited number of F-35s could act as a stepping stone to India’s indigenous AMCA program, providing valuable 5th-gen combat experience until India develops its own.

 

Balancing Affordability and Capability.  Balancing affordability and capability in fighter acquisition programs is a complex and intellectually stimulating challenge in defence procurement. Modern fighter jets, with their advanced avionics, stealth technology, and weapons systems, are not just engineering marvels but also strategic assets that can dominate air, land, and sea. However, these capabilities come at a steep cost, and governments must grapple with budgetary constraints while ensuring their air forces remain capable of addressing current and future threats.

 

Trade-offs. Understanding and navigating the myriad trade-offs in fighter aircraft acquisition programs are a cornerstone of defence procurement. Balancing performance, cost, operational requirements, and strategic objectives is a complex task that governments and military planners must master to ensure optimal capability within the constraints of their resources. This knowledge empowers decision-makers and enhances the effectiveness of defence strategies.

 

Trade-Offs for Consideration in Fighter Acquisition Programs

Cost vs. Capability. A fundamental trade-off in fighter acquisition is between cost and capability. High-end fifth-generation fighters like the F-35 and the F-22 offer unparalleled performance but come at an exorbitant price. More cost-effective alternatives, such as the F-16 or the Gripen, may lack some advanced features but remain viable options for many air forces. Nations must decide whether to prioritise cutting-edge technology or opt for a more extensive fleet with slightly reduced capabilities.

 

Multirole Flexibility vs. Specialisation. Many modern fighters, such as the F-35 and Rafale, are designed as multirole platforms capable of performing air-to-air, air-to-ground, and electronic warfare missions. This flexibility reduces fleet diversity but may lead to compromises in specific roles. In contrast, specialised aircraft like the A-10 Thunderbolt II excel in close air support but lack air superiority capabilities. Decision-makers must weigh whether a single multirole platform meets their needs or if specialised aircraft are necessary.

 

Short-Term vs. Long-Term Investment. Some nations prioritise acquiring proven, off-the-shelf platforms that provide immediate operational capability, while others invest in the long-term development of next-generation aircraft. The former minimises short-term risks but may become outdated sooner. The latter approach, seen in programs like the Tempest and NGAD, is high-risk but ensures future technological superiority.

 

Fleet Size vs. High-End Technology. Budget constraints often force militaries to choose between a more extensive fleet of less advanced fighters or a smaller number of top-tier aircraft. A more comprehensive fleet provides more coverage and sortie rates, while a smaller fleet of high-end fighters offers superior combat capability. For instance, many nations supplement their fleets of expensive stealth aircraft with cheaper fourth-generation fighters to maintain numbers.

 

Capability vs. Quantity. Nations must decide between procuring fewer advanced jets or a more extensive fleet of less capable aircraft. For instance, the U.S. chose to supplement its high-end F-22 fleet with the more affordable F-35, while countries like China and Russia have emphasised quantity to ensure strategic depth.

 

Indigenous Development vs. Foreign Procurement. Countries face a strategic choice between developing domestic fighter programs and purchasing from foreign suppliers. Indigenous programs, such as India’s Tejas/AMCA or South Korea’s KF-21, promote self-sufficiency but require significant research and industrial infrastructure investment. Buying foreign jets ensures immediate capability but can lead to dependency on external suppliers.

 

Indigenous Fighter Development for Cost-Effectiveness. India’s HAL Tejas was developed to reduce reliance on foreign fighters while maintaining affordability. Designed with modular upgrades in mind, the Tejas has gradually improved with better radar, weapons integration, and avionics. Despite delays in development, its affordability compared to Western counterparts has made it an attractive option for India’s long-term air power strategy.

 

Balancing Affordability and Capability

Balancing affordability and capability in fighter acquisition programs is a complex but essential task for modern air forces. Governments must ensure that their aircraft provide operational effectiveness without exceeding budgetary constraints. The following best practices help achieve this balance.

 

Comprehensive Lifecycle Planning. A fighter jet’s cost extends far beyond its initial acquisition price. Governments must consider long-term expenses, including operation, maintenance, upgrades, and eventual disposal. Comprehensive lifecycle cost analysis, which involves estimating all costs associated with a system over its entire life, helps mitigate budgetary surprises and ensures financial sustainability over decades of service.

 

Incremental Upgrades. Modern fighter jets should have modular systems and open architectures to accommodate incremental upgrades. This approach extends an aircraft’s service life while spreading costs over time. The F-16 Fighting Falcon, introduced in the 1970s, remains operational due to continuous upgrades in avionics, radar, and weapons. This strategy prevents obsolescence while reducing the need for costly new aircraft acquisitions.

 

Focus on Multi-Role Capability. Multi-role fighters provide greater operational flexibility by performing various missions with a single platform. The Dassault Rafale exemplifies this concept, capable of air-to-air combat, ground attack, and reconnaissance missions. This versatility allows air forces to reduce the number of specialised aircraft types, simplifying logistics and maintenance while lowering overall costs.

 

Prioritising Export Potential. Designing fighter jets with exportability in mind helps amortise development costs and reduce per-unit expenses. Countries that successfully market their fighters to foreign buyers can reinvest revenues into further technological advancements.

 

Emerging Trends and Technologies. Technological advancements are reshaping how air forces balance affordability and capability. The following emerging trends offer cost-effective solutions while enhancing combat effectiveness.

 

Unmanned Systems. Unmanned aerial vehicles (UAVs) and ‘loyal wingman’ drones, which are autonomous aircraft that operate alongside manned aircraft, complement traditional fighter jets by taking on high-risk missions at a lower cost. These platforms can conduct reconnaissance, electronic warfare, and combat operations without endangering pilots. Programs like the Boeing MQ-28 Ghost Bat highlight the growing role of UAVs and ‘loyal wingman’ drones in modern air combat.

 

Artificial Intelligence. AI-powered systems improve decision-making, enhance situational awareness, and reduce pilot workload. Advanced AI integration enables autonomous operations, making fighters more effective while potentially reducing crew training costs. AI-driven mission planning and adaptive combat algorithms are key to next-generation fighter capabilities.

 

Conclusion

Balancing affordability and capability in fighter acquisition programs is a complex but essential endeavour. As nations face evolving threats and fiscal constraints, the ability to make strategic trade-offs will determine their air power’s effectiveness. By embracing innovative technologies and fostering international collaboration, governments can achieve an optimal balance that ensures operational readiness and financial sustainability.

 

India traditionally prefers non-restrictive platforms like the Rafale and Su-30MKI that allow customisation. The F-35, despite its advanced stealth and networking, is deeply tied to U.S. control mechanisms. If Germany, Canada, and Portugal, NATO allies with solid U.S. interoperability, are hesitating, India must be doubly cautious before signing anything. The Big Question, however, remains whether India should even consider the F-35. After analysing the factors mentioned earlier, the current answer is negative (even with faster delivery schedules).  

 

For considering the F-35 as a potential option for India, several critical concerns must be addressed to make it a viable choice. Foremost among these is the issue of technology transfer and support to Indigenous aircraft development. Operational sovereignty is essential, as any restrictions imposed by the U.S. could limit India’s ability to integrate indigenous systems and conduct independent upgrades. Cost considerations (including procurement, maintenance, and lifecycle expenses) must be carefully weighed against alternative platforms. Geopolitical reliability is another key factor, given past U.S. sanctions and export restrictions that could impact fleet sustainability. Finally, interoperability with India’s existing fleet and infrastructure must be thoroughly assessed to ensure seamless integration without excessive logistical burdens. Addressing these concerns through ironclad agreements and long-term strategic assurances would be essential for India even to consider the F-35 option (in limited numbers).

 

Please Do Comment.

 

1118
Default rating

Please give a thumbs up if you  like The Post?

 

Link to the article on the website:-

U.S.-China Tensions: F-16 Vipers To Get LRASM Capability That Could Puncture World’s Biggest Navy

 

For regular updates, please register your email here:-

Subscribe

 

 

References and credits

To all the online sites and channels.

Pics Courtesy: Internet

Disclaimer:

Information and data included in the blog are for educational & non-commercial purposes only and have been carefully adapted, excerpted, or edited from reliable and accurate sources. All copyrighted material belongs to respective owners and is provided only for wider dissemination.

 

 

624: F-35 Stealth Vs Beast Mode

 

Israel’s recent revelation about deploying the F-35 in beast mode, carrying weapons externally during aerial strikes, prompts a deeper exploration. This strategic decision, while compromising the aircraft’s stealth, is a calculated move. The understanding of going beast mode over Gaza, with its negligible air defence, is clear. However, the prospect of employing this mode in Lebanon or Iran, with their formidable air defences, presents a complex operational challenge. This raises the question: what are the operational intricacies of using the beast mode in such scenarios?

 

The F-35, in its ‘stealth mode,’ carries weapons internally, effectively reducing its radar signature. However, when it transitions to ‘beast mode,’ carrying weapons externally, it sacrifices this stealth advantage for increased firepower. This Trade-off is a crucial consideration in military operations.

 

In “beast mode,” it carries additional munitions on external pylons. This configuration increases the aircraft’s radar cross-section (RCS), making it more detectable by enemy radar.

 

Beast mode increases the F-35’s firepower by allowing it to carry more ordnance, maximising strike efficiency against numerous ground targets.

 

However, Israel’s use of the F-35 in beast mode likely depends on the specific operational environment and objectives.

 

The Beast Mode can be used in the following operational scenarios:-

    • The enemy has no air defence capability or weapons.
    • SEAD (Suppression of Enemy Air Defences) missions have degraded the enemy’s radar and SAM capabilities.
    • One way to mitigate the risks of flying in beast mode is by staying out of the enemy’s air defence weapons range. This can be achieved through intelligence-supported operational planning and/or stand-off attacks. The role of intelligence and meticulous planning in these operations cannot be overstated.
    • Using escort and suppression support from electronic warfare platforms to mitigate the risks of flying in beast mode.

 

Low Threat Environment (Gaza Strikes). Against Hamas and other militant groups in Gaza, stealth is unnecessary since they lack sophisticated radar-guided air defences. Beast mode can be used in a risk environment to maximise firepower.

 

Lebanon (Hezbollah) Strikes. Hezbollah has comparatively more advanced air defence capabilities than Hamas, including Iranian-made radars and some older Russian SAMs. Beast mode can be used in a medium-risk environment by avoiding enemy air defences.

 

Iran Strikes—A Different Challenge. Iran operates a more sophisticated air defence network. Using beast mode over Iran would be risky because the F-35 would be much more visible on Iranian radar, and Iran’s long-range SAMs could engage the aircraft before it reaches the target. Beast mode can be used in a high-risk environment after neutralising enemy air defences.

 

Link to the article by Sakshi Tiwari :-

After 1st Combat Use Of F-35, Israel Achieves Another First By Flying Adir Stealth Fighters In “Beast Mode”

Please Do Comment.

 

1118
Default rating

Please give a thumbs up if you  like The Post?

 

For regular updates, please register your email here:-

Subscribe

 

 

References and credits

To all the online sites and channels.

Pics Courtesy: Internet

Disclaimer:

Information and data included in the blog are for educational & non-commercial purposes only and have been carefully adapted, excerpted, or edited from reliable and accurate sources. All copyrighted material belongs to respective owners and is provided only for wider dissemination.

 

English हिंदी