579: INDIA’S JOURNEY IN FIGHTER AIRCRAFT DESIGN & MANUFACTURE: CHALLENGES AND SUCCESSES

 

Pic Courtesy Net

 

My Article published on the Chanakya Forum Website on 10 Jan 25

 

India’s fighter aircraft production journey reflects a blend of significant achievements and persistent challenges. The licensed production of platforms like the Mig-21, Sukhoi Su-30MKI and SEPECAT Jaguar has strengthened the Indian Air Force (IAF) while providing invaluable experience in manufacturing and technology integration. Significant success includes the past development of the Indigenous HF-24 Marut and the recent Tejas aircraft with state-of-the-art avionics, composite materials, and a delta-wing design. Tejas has become a symbol of India’s aerospace ambitions. Additionally, the Advanced Medium Combat Aircraft (AMCA) project, aimed at producing a fifth-generation stealth fighter, underscores India’s aspirations to join global defence leaders. However, India’s fighter production has faced notable failures. Early efforts, such as the HF-24 Marut, were limited by underpowered engines and technological constraints. Delays in indigenous projects like Tejas Mk2 and AMCA and dependency on imported engines and critical systems have hampered timelines. Additionally, quality control and production scalability remain areas of concern. Despite these challenges, initiatives like “Make in India”, a government initiative to encourage manufacturing in India, and increased private sector participation foster a robust defence manufacturing ecosystem. By addressing these issues, India has the potential to emerge as a global player in fighter aircraft production and exports.

 

Journey So Far

 

India’s journey in fighter aircraft production, spanning several decades, began in the post-independence era. The timeline of this journey is marked by key milestones, from the initial reliance on imports to the transition towards licensed production and indigenous development. Below is a chronological overview of India’s significant achievements and persistent challenges in fighter aircraft production:-

 

In the 1950s, India’s first steps in aircraft production were through licensed manufacturing agreements with foreign companies. The De Havilland Vampire, a British jet fighter, was the first jet aircraft inducted into the Indian Air Force (IAF). Hindustan Aeronautics Limited (HAL) assembled the Vampire under license, marking India’s entry into jet aircraft production. In addition, HAL produced the Hawker Hunter under the UK’s license. The Hunter served as a versatile fighter-bomber during the 1965 and 1971 wars. HAL also produced Folland Gnat under license. Gnat was known as the “Sabre Slayer” for its success against the Pakistani Air Force in 1965. India later developed an improved version called Ajeet in the 1970s.

 

During the 1970s–1980s, India began exploring indigenous fighter aircraft development while continuing licensed production. The HF-24 Marut was India’s first indigenously developed jet fighter. Although it had limited operational success due to underpowered engines, it was a milestone in India’s aerospace development. During the same period, India entered into a series of agreements with the Soviet Union to produce MiG-21 fighters under license. HAL manufactured over 600 MiG-21 aircraft, which became the backbone of the IAF for decades. These projects helped HAL acquire critical knowledge in jet manufacturing.

 

In the 1990s, India procured the Anglo-French SEPECAT Jaguar for deep strike roles and began producing it under license at HAL. This period saw India modernise its air force with more advanced fighters. The Mirage 2000, a French multirole fighter, was inducted to address India’s capability gaps. While HAL did not produce this aircraft, it supported its maintenance and upgrades. India signed a deal with Russia for the licensed production of the Su-30MKI, a highly advanced multirole fighter. HAL has produced over 270 Su-30MKIs, which remain a critical component of the IAF.

 

In the last two decades, India’s focus has shifted towards indigenous fighter aircraft production, particularly with the Light Combat Aircraft (LCA) program. Designed by the Aeronautical Development Agency (ADA) and produced by HAL, the Tejas program marks a significant milestone in India’s return to indigenous fighter development. Despite delays, the Tejas program eventually achieved operational clearance, with the Mk1 variant in service and Mk1A and Mk2 under development. Work is underway to develop Advanced Medium Combat Aircraft (AMCA), a fifth-generation fighter under development by DRDO and HAL, aiming to equip the IAF with stealth capabilities.

 

Leapfrog Strategy

 

India’s leapfrog strategy for fighter aircraft development and production is a strategic imperative, aiming to bypass incremental progress and achieve advanced capabilities in a shorter timeframe. It focuses on cutting-edge technologies rather than following a linear development path. The need for strategic autonomy and rapid modernisation of the Indian Air Force drives this approach. India’s leapfrog strategy has shown promise but faces mixed results. The strategy tries to leverage foreign collaboration for critical technologies, private sector involvement, and government initiatives like “Make in India.” On the one hand, developing advanced platforms like the HAL Tejas demonstrates progress. Despite initial delays, the Tejas program has evolved into a modern, capable aircraft. However, challenges persist, raising questions about its effectiveness. Persistent project delays, reliance on imported engines and key technologies, and research and development capabilities gaps have hindered progress. Furthermore, scaling up production to meet the Indian Air Force’s demands remains challenging. The approach’s success depends on addressing these systemic issues, accelerating timelines, and building a stronger domestic defence ecosystem. It’s a work in progress with tangible but incomplete results.

 

Development and Production Ecosystem

 

India’s fighter aircraft development and production ecosystem is a collaborative effort, combining users, public and private sector research and development and manufacturing agencies, and government-led initiatives to achieve self-reliance and reduce import dependency. Hindustan Aeronautics Limited (HAL) and the Defence Research and Development Organisation (DRDO) are at the forefront of this ecosystem, driving R&D and production. However, the private sector, with companies like Tata Advanced Systems, Larsen & Toubro, and Adani Defence, is increasingly pivotal in manufacturing components, subsystems, and assemblies. Government initiatives such as “Make in India” and establishing defence industrial corridors in Tamil Nadu and Uttar Pradesh have further bolstered the ecosystem by encouraging innovation, attracting foreign investment, and creating a favourable environment for defence manufacturing. These corridors are designed to streamline production and reduce costs, making India a competitive global player. Despite these advancements, challenges remain. Nonetheless, the ecosystem is evolving steadily with sustained policy support, greater private sector involvement, and a focus on innovation.

 

Challenges

 

Fighter aircraft production in India faces technical, financial, operational, and policy challenges. Addressing these challenges is crucial to achieving self-reliance in defence manufacturing.

 

Designing and producing 5th-generation fighters involves cutting-edge technology in stealth, advanced materials, and electronics, where India is still catching up. Critical technologies are primarily imported. India’s indigenous engine development program, such as the Kaveri engine, has faced setbacks, forcing reliance on foreign engines like the General Electric F404 and F414 for the Tejas. A significant portion of critical components, including avionics, engines, and weapons systems, are imported, which increases costs and reduces self-reliance. Dependence on foreign suppliers creates vulnerabilities in geopolitical tensions, as witnessed by delays in acquiring components during global conflicts or supply chain disruptions.

 

The aerospace industry ecosystem in India, including tier-2 and tier-3 suppliers, is underdeveloped compared to global standards. There are limited domestic facilities for high-end research, testing, and simulation. HAL dominates military aircraft production, leaving limited scope for private sector participation, which could otherwise bring efficiency, innovation, and competition.

 

Programs like the Light Combat Aircraft (LCA) Tejas have taken decades to move from concept to operational deployment, leading to the obsolescence of certain features. Delays often lead to significant cost overruns, which put additional pressure on defence budgets and make indigenous programs less competitive than foreign options. Excessive bureaucracy usually slows down India’s defence procurement and manufacturing processes, causing delays in decision-making and execution. Fighter aircraft production requires massive investments in R&D, infrastructure, and production lines, straining defence budgets. Adequate budget needs to be allocated for these.

 

Designing and manufacturing advanced fighter jets require highly specialised skills, which are still developing in India. Many skilled engineers and scientists prefer opportunities abroad due to better resources and working conditions. Issues with consistency and quality control in manufacturing have occasionally plagued indigenous projects. Indigenous aircraft often face concerns regarding reliability and maintenance, which can impact their adoption by the armed forces and export potential.

 

Competing in the international market is challenging, as buyers often prefer aircraft from established manufacturers with long track records. Indian indigenous fighters compete against proven and readily available foreign options, which usually have superior capabilities. Due to intense competition, foreign collaborators often hesitate to share cutting-edge technologies, limiting the depth of technology transfer agreements. India’s defence offset policy, aimed at boosting domestic production through foreign collaborations, has seen mixed success.

 

Way Ahead

 

India has made significant strides in indigenous fighter aircraft production but faces challenges in achieving global competitiveness and self-reliance. The future of fighter aircraft production in India lies in addressing these challenges with a focused, multi-pronged strategy.

 

Leverage lessons learned from the Tejas program to avoid delays and cost overruns. Support and prioritise the Advanced Medium Combat Aircraft (AMCA) program, ensuring adequate funding, streamlined processes, and timely execution. Focus on Core Technologies. Accelerate the development of indigenous critical technologies like jet engines (e.g., Kaveri engine), AESA radars, stealth coatings, and advanced avionics.

 

Build a Robust Defence Manufacturing Ecosystem. Strengthen Indigenous R&D and technology development. Encourage tier-2 and tier-3 suppliers to build capabilities in aerospace components, materials, and electronics to develop reliable supply chains. Provide financial incentives and technical support to MSMEs involved in defence manufacturing. Promote private sector participation. Encourage private players to take on larger roles in aircraft production, from components to complete systems. Establish dedicated aerospace clusters in states to promote innovation and manufacturing at scale.

 

Enhancing Policy Frameworks and Governance. Simplify bureaucratic procedures to streamline the approval process for defence projects, ensuring faster approvals and reduced project timelines. Revise offset Policies to maximise technology transfer and industrial participation from foreign firms.

 

Collaborate with global aerospace firms to gain access to advanced research while ensuring knowledge transfer. Expand international collaborations and technology partnerships by pursuing joint development programs with global defence manufacturers, ensuring equitable technology and intellectual property sharing. Collaborate with friendly nations to co-develop fighter platforms suited to their requirements, such as light combat aircraft for smaller countries.

 

Provide diplomatic and financial support for promoting Indian fighter aircraft to foreign buyers, particularly in Asia, Africa, and South America. Ensure Indian platforms meet international quality and reliability standards to boost global confidence.

 

Leverage emerging technologies like AI and machine learning. Integrate AI for autonomous systems, combat decision-making, and predictive maintenance in fighter aircraft. Invest in hypersonic platforms to prepare for next-generation warfare. Adopt advanced manufacturing techniques like 3D printing and digital twins to reduce costs and improve precision.

 

Collaborate with academic institutions to create specialised programs in aerospace engineering and design. Establish dedicated training centers for skill development in aircraft production. Offer competitive incentives and research opportunities to prevent brain drain to other countries.

 

Establish a unified long-term vision for the users and defence manufacturing sectors to align production capabilities with future requirements. Ensure the production ecosystem is scalable to meet both domestic and export demands. Strengthen indigenous MRO facilities to reduce dependence on foreign firms to service advanced platforms.

 

Conclusion

 

India’s fighter aircraft production is at a critical juncture, with opportunities to emerge as a global aerospace hub. The way forward requires a balanced approach, combining indigenous innovation with strategic international collaborations. By fostering a strong industrial base, streamlining policies, and embracing emerging technologies, India can achieve its vision of self-reliance while contributing significantly to global defence markets.

 

Please do Comment.

1014
Default rating

Please give a thumbs up if you  like The Post?

 

Link to the article on the website:-

INDIA’S JOURNEY IN FIGHTER AIRCRAFT DESIGN & MANUFACTURE: CHALLENGES AND SUCCESSES

For regular updates, please register your email here:-

Subscribe

 

 

References and credits

To all the online sites and channels.

References:-

  1. “HAL and India’s Aerospace Journey” – HAL Publication. Documents HAL’s contributions to fighter aircraft production, including licensed and indigenous projects.
  1. Stephen P. Cohen and Sunil Dasgupta, “Arming without Aiming: India’s Military Modernisation”. Discusses India’s strategic approach to defence modernisation and its implications for Indigenous aircraft development.
  1. “Leapfrogging to Fifth-Generation Fighters: India’s AMCA Project”, Defence and Technology Review. Explains India’s leapfrog strategy in developing fifth-generation fighter aircraft.
  1. “Building India’s Aerospace Ecosystem”, Brookings India. It focuses on the opportunities and challenges of creating a self-reliant aerospace industry.
  1. Laxman Kumar Behera, “India’s Defence Industrial Base: The Role of Defence PSUs and Private Sector”. Explores the role of state-owned enterprises like HAL and private industry in defence manufacturing. Highlights challenges in India’s defence production ecosystem.
  1. “Private Sector Participation in India’s Defence Production”, Vivekananda International Foundation. Explores the growing role of private companies in defence manufacturing.
  1. “India’s Defence Industrial Corridors: A Game-Changer?” The Hindu. Evaluate the impact of Tamil Nadu and Uttar Pradesh defence corridors on production capabilities.
  1. “Make in India: Defence Manufacturing Sector”, Government of India. Overview of policies promoting Indigenous fighter aircraft production and other defence systems.
  1. Kanti Bajpai, Harsh Pant, “India’s Defence and Security: Challenges and Strategies”. Provides insights into India’s defence production strategies, including fighter aircraft, and evaluates systemic challenges.
  1. “Challenges in India’s Fighter Aircraft Development”, LiveMint. Discusses delays, quality control issues, and reliance on imports.
  1. “Collaborations in Defence Manufacturing”, FICCI defence and Aerospace Division. Industry perspective on joint ventures and foreign collaborations in fighter aircraft development.
  1. “Technology Transfers in Defence: A Case Study of India’s Fighter Jet Programs”, Stockholm International Peace Research Institute (SIPRI). Examines India’s reliance on foreign technology and the scope for indigenisation.
  1. “India’s Fighter Jet Ambitions: Lessons from Global Aerospace,” RAND Corporation. Compares India’s efforts with global benchmarks, offering insights into overcoming systemic challenges.
  1. “India’s Defense Industrial Complex: Time for Reform”, Observer Research Foundation. Analyses India’s defence manufacturing ecosystem and recommendations for improvement.

Disclaimer:

Information and data included in the blog are for educational & non-commercial purposes only and have been carefully adapted, excerpted, or edited from reliable and accurate sources. All copyrighted material belongs to respective owners and is provided only for wider dissemination.

578: CPC’S WEAPON OF INFLUENCE: THE UNITED FRONT WORK DEPARTMENT

 

Pic Courtesy Net

 

My Article published on the Indus International Research Foundation  Website on 10 Jan 25.

 

The United Front Work Department (UFWD) of the Communist Party of China (CPC) is a unique and critical apparatus in Beijing’s strategy for consolidating power domestically and projecting influence internationally. Its overarching goal is to consolidate the Party’s influence and ensure the CPC’s dominance by co-opting or neutralising entities that could challenge its authority. As one of the most significant arms of the CPC’s soft power machinery, the UFWD operates through a complex network of relationships, leveraging cultural, political, and economic channels to further the Party’s interests.

 

Origins and Evolution. The United Front concept originated during the CPC’s early years in the 1920s. Initially, it referred to the alliances formed between the CPC and other political groups, particularly the Kuomintang (KMT), to oppose foreign powers and imperialism in China. Mao Zedong later refined the strategy to forge alliances with non-Communist forces during the fight against Japanese occupation and the Chinese Civil War. The formal establishment of the UFWD occurred in 1942, with the aim of coordinating these alliances under the Party’s leadership. After establishing the People’s Republic of China (PRC) in 1949, the UFWD became instrumental in integrating non-Communist elites, ethnic minorities, and religious groups into the new socialist state. Its focus expanded further under Deng Xiaoping, who emphasised economic development and engagement with overseas Chinese communities as part of China’s modernisation efforts. Under Xi Jinping, the UFWD’s role has grown significantly, reflecting the CPC’s renewed emphasis on ideological control and assertive diplomacy. The UFWD now functions as a core mechanism for safeguarding Party dominance and advancing China’s strategic interests globally.

 

Key Objectives. The UFWD’s overarching mission is to consolidate the CPC’s power and influence. This mission can be broken down into three main objectives:-

    • Domestic Cohesion. Cultivate loyalty among non-Communist groups, including ethnic minorities (e.g., Tibetans and Uyghurs) and religious communities. Monitor and influence academic, professional, and civil society organisations to align with CPC policies. Promote “ethnic unity” and “religious harmony” under CPC-defined terms
    • Overseas Influence. Engage with overseas Chinese communities to foster loyalty to the CPC. Influence foreign political, academic, and business elites to advance China’s strategic interests.
    • Neutralising Opposition. Discredit dissidents, including activists, journalists, and exiled groups critical of the CPC. Counter perceived threats from foreign ideological, political, and religious movements. Discredit and marginalise groups critical of the CPC, such as Tibetan and Uyghur activists, pro-democracy movements, and Falun Gong practitioners.

 

Organisational Structure and Mandate. The UFWD operates directly under the CPC Central Committee, emphasising its importance within the Party’s hierarchy. It has specialised bureaus targeting specific groups, including ethnic minorities, religious organisations, intellectuals, businesspeople, and overseas Chinese. The regional branches replicate the national structure, ensuring its influence permeates all governance and society levels. The UFWD is also closely connected to various other entities, including the Chinese People’s Political Consultative Conference (CPPCC), which serves as a key platform for engaging non-Party representatives.

 

    • Domestic Engagement. The UFWD liaises with non-Communist political parties, religious organizations, and intellectuals to ensure alignment with CPC policies. This includes co-opting influential figures through patronage, opportunities, and subtle coercion.
    • Ethnic and Religious Affairs. Ethnic minorities, particularly in sensitive regions like Tibet and Xinjiang, are a primary focus. The UFWD seeks to assimilate these groups while suppressing dissent. Religious leaders are co-opted to propagate Party-approved interpretations of faith.
    • Overseas Chinese Affairs. Diaspora communities are key targets. The UFWD fosters loyalty among overseas Chinese through cultural programs, business opportunities, and nationalist rhetoric, positioning them as unofficial ambassadors of Chinese interests.
    • International Influence. Beyond the diaspora, the UFWD cultivates relationships with foreign politicians, academics, think tanks, and media to shape global perceptions of China. This includes lobbying, funding academic programs, and leveraging Confucius Institutes.

Tactics, Strategies and Activities. The UFWD employs a diverse set of tactics to achieve its objectives. These tactics can be broadly categorized into co-optation, infiltration, and information operations.

    • Co-optation and Integration. The UFWD actively seeks to incorporate influential figures, such as intellectuals, religious leaders, and business magnates, into the CPC’s governance framework. This is often achieved through honorary titles, membership in advisory bodies like the CPPCC, or access to lucrative business opportunities. In regions like Tibet and Xinjiang, the UFWD promotes loyalty to the CPC by incentivizing compliance through economic development programs and cultural exchanges. The UFWD courts influential overseas Chinese figures, offering them prestigious roles in organizations like the All-China Federation of Returned Overseas Chinese.
    • Infiltration. The UFWD establishes or co-opts Chinese community associations, student groups, and cultural organizations abroad to serve as extensions of its influence. By funding research centers, think tanks, and academic programs, the UFWD shapes discourse on China-related topics. In some countries, UFWD-backed entities have been accused of funding political campaigns, lobbying policymakers, and embedding operatives in influential positions.
    • Information Operations. The UFWD promotes CPC narratives through Chinese-language media outlets and partnerships with foreign media organisations. The UFWD uses social media platforms to amplify pro-CPC narratives and suppress dissenting voices. It pressures foreign publishers, universities, and businesses to censor topics sensitive to Beijing, such as human rights abuses in Xinjiang or the status of Taiwan.
    • Ethnic and Religious Manipulation. Work to assimilate ethnic minorities into the dominant Han culture under the guise of promoting “unity.” Regulate and co-opt religious organisations to ensure they operate under state-sanctioned frameworks. In Xinjiang, the UFWD has played a central role in promoting the “Sinicisation” of Uyghur culture. This involves assimilating Uyghurs into the dominant Han culture through campaigns targeting religious practices, language use, and education. The UFWD’s policies in the region have drawn international condemnation for their role in facilitating human rights abuses.

International Concerns, Controversies and Criticisms. Many governments, especially in liberal democracies, have raised concerns about UFWD activities as political interference or soft power coercion. Some overseas Chinese communities feel pressured by UFWD-backed organisations to align with the CPC, even when their personal or political interests diverge. The UFWD’s activities have significant implications for international relations, particularly as they relate to sovereignty, free speech, and democratic integrity.

    • Erosion of Sovereignty. UFWD operations in foreign countries often blur the line between cultural exchange and political interference, challenging the sovereignty of host nations.
    • Interference in Domestic Politics. Accusations of UFWD-linked interference in elections and policymaking have surfaced in countries like Australia, Canada, and the United States. These include funding political candidates, infiltrating institutions, and spreading propaganda.
    • Suppression of Free Speech. By pressuring foreign entities to align with CPC narratives, the UFWD undermines open discourse on critical issues such as human rights and Taiwan.
    • Polarisation of Diaspora Communities. UFWD engagement with overseas Chinese communities can create divisions, as some individuals align with Beijing while others oppose its policies.
    • Human Rights Violations. The UFWD’s role in suppressing ethnic and religious groups, particularly in Tibet and Xinjiang, has drawn widespread condemnation. These policies are seen as part of broader efforts to erase cultural identities and enforce Han-centric nationalism.

 

Recent Developments and Responses. The UFWD has become increasingly active under Xi Jinping’s leadership, reflecting his broader emphasis on ideological control and assertive diplomacy. Initiatives like the Belt and Road Initiative (BRI) and the CPC’s global outreach have expanded UFWD’s activities worldwide, prompting intensified scrutiny and countermeasures from other nations. Governments in countries like the United States, Australia, and Canada have heightened monitoring of UFWD-linked organizations and individuals. Laws targeting foreign interference, such as Australia’s Foreign Influence Transparency Scheme, have been introduced to curb UFWD activities. Efforts to educate the public about UFWD tactics, including media campaigns and academic research, have increased. Supporting independent Chinese diaspora organisations helps counterbalance UFWD influence.

 

Conclusion. The United Front Work Department is a cornerstone of the CPC’s strategy for consolidating power and projecting influence. Through its multifaceted operations, the UFWD seeks to reshape global perceptions and align international actors with Beijing’s agenda. However, its activities also raise critical questions about sovereignty, freedom, and the boundaries of acceptable state behaviour in an interconnected world. Understanding the UFWD is essential for crafting informed and balanced responses, ensuring that engagement with China is both principled and pragmatic.

 

Please do  comment.

 

1014
Default rating

Please give a thumbs up if you  like The Post?

 

Link to the article on the website:-

CPC’S Weapon of Influence: The United Front Work Department

 

For regular updates, please register your email here:-

Subscribe

 

 

References and credits

To all the online sites and channels.

References:-

  1. Joske, Alex. “The Party Speaks for You: Foreign Interference and the Chinese Communist Party’s United Front System.” Australian Strategic Policy Institute (ASPI), 2020.
  1. Carothers, Thomas, & Orenstein, Mitchell A. “How the Chinese Communist Party’s United Front Work Influences Europe.” Journal of Democracy, Vol. 32, No. 2, 2021.
  1. Lehr, Amy. “The United Front Work Department’s Influence Tactics in the United States.” Center for Strategic and International Studies (CSIS), 2020.
  1. Zang, Xiaowei. “The Role of the United Front in Ethnic Relations in China.” Asian Survey, Vol. 56, No. 2, 2016.
  1. Hamilton, Clive. “Hidden Hand: Exposing How the Chinese Communist Party is Reshaping the World.” Journal of Contemporary China, Vol. 28, No. 118, 2019.
  1. Australian Strategic Policy Institute (ASPI). “The United Front Work Department and its Global Influence.” ASPI Special Report, 2020.
  1. Center for Strategic and International Studies (CSIS). China’s Influence Operations: A Macro Perspective. CSIS Reports, 2018.
  1. Wilson Center. United Front Work Department: Domestic and International Influence Operations. 2019.
  1. The Economist. “The Long Arm of the Chinese Communist Party.” October 2020.
  1. Foreign Affairs. “Beijing’s Coercive Charm Offensive.” February 2022.
  1. Reuters. “How China Uses United Front to Gain Influence Abroad.” June 2019.
  1. South China Morning Post (SCMP). “United Front Work Department: The CPC’s Influence Arm Abroad.” August 2021.
  1. Brady, Anne-Marie. Magic Weapons: China’s Political Influence Activities Under Xi Jinping. Wilson Center, 2017.
  1. Kerry, Brown. The Communist Party of China and the Future of China. Cambridge University Press, 2016.

Disclaimer:

Information and data included in the blog are for educational & non-commercial purposes only and have been carefully adapted, excerpted, or edited from reliable and accurate sources. All copyrighted material belongs to respective owners and is provided only for wider dissemination.

577: DEADLY FORTNIGHT – NINE AIR CRASHES – SEVERAL LESSONS

 

Pic Courtesy Net

 

My Article published on the Life of Soldiers website on 10 Jan 25.

 

Within a single fortnight, the world was rocked by the tragic loss of life in nine separate air crashes. This stark reality serves as a poignant reminder of the ever-present dangers in modern aviation. While air travel is generally safe, these recent disasters underscore the urgent need for unwavering vigilance in aviation safety practices. Each crash presents us with crucial lessons—be it about aircraft technology, crew training, regulatory oversight, or emergency response—that demand immediate attention to prevent further tragedies.

 

Unfortunate Occurrences

 

Jeju Plane Crash.  The most recent and deadliest crash occurred on December 28, when a Jeju Air passenger aircraft crashed while attempting to land at Muan Airport, South Korea, resulting in 179 fatalities. Reportedly, air traffic control issued a bird strike warning six minutes before the crash. Shortly thereafter, the pilot declared a mayday, indicating immediate distress. The aircraft attempted a belly landing after its landing gear failed to deploy, leading to a skid off the runway. The plane collided with a concrete wall approximately 250 meters from the runway’s end, causing it to burst into flames. This structure housed navigational equipment and has been criticised for its hazardous placement.

 

Air Canada Mishap. On December 28, Air Canada Express Flight 2259 suffered a landing gear failure upon arriving at Halifax Stanfield International Airport. The aircraft skidded down the runway, its wing catching fire. All 73 passengers and crew were evacuated safely, avoiding injury or fatalities.

 

Azerbaijan Airlines Crash. Christmas Day, December 25, saw an Embraer ERJ-190AR aircraft operated by Azerbaijan Airlines crash near Aktau Airport in Kazakhstan, killing 38 out of 67 passengers. The Embraer 190AR aircraft was en route from Baku, Azerbaijan, to Grozny, Russia, carrying 62 passengers and five crew members.  The plane was reportedly struck by a Russian surface-to-air missile over Chechnya, intended to intercept a Ukrainian drone. This caused significant damage, leading to an attempted emergency landing in Aktau, Kazakhstan, where the plane ultimately crashed.

 

Small Aircraft Crash in Scotland. On December 23, a small aircraft crashed near Fife Airport in Scotland, killing the 50-year-old pilot. Witnesses reported unusual plane manoeuvres before it plummeted into a field shortly after take-off.

 

Private Plane Crash in Brazil. Earlier in the month, on December 22, a private plane crashed in Gramado, Brazil, killing ten members of the Galeazzi family, including prominent businessman Luiz Claudio Galeazzi. The accident also injured 17 people on the ground, with two in critical condition. The aircraft took off from Canela Airport under unfavourable weather conditions, including overcast skies and fog. Shortly after take-off, it crashed approximately 3 kilometers from the airport. The plane reportedly struck a building’s chimney, the second floor of a residential structure, and a furniture store before coming to rest. Debris also impacted a nearby inn, leading to fires that caused additional injuries on the ground.

 

Papua New Guinea Islander Crash. On December 22, a Britten-Norman BN-2B-26 Islander operated by North Coast Aviation crashed in the Sapmanga Valley of Morobe Province, Papua New Guinea. All five people aboard were killed when the plane, travelling from Wasu Airport to Lae-Nadzab Airport. Among the deceased were the pilot, David Sandery, a seasoned bush pilot with over 15,000 hours of flying experience, and four passengers, including government officials and their spouses. The aircraft departed Wasu Airstrip at 10:12 a.m., and a distress signal was received at 10:30 a.m., prompting an emergency response led by the Aviation Rescue Coordination Centre (ARCC). Search efforts were delayed due to adverse weather conditions, but the crash site was eventually located the following morning.

 

Cessna Accident. On December 20, a Cessna plane en route from Porto Velho to Manaus in Brazil went missing. Its wreckage was found in the Amazon rainforest five days later, with both occupants, pilot Rodrigo Boer Machado, 29, and passenger Breno Braga Leite, tragically confirmed dead. The aircraft, a Cessna with registration PT-JCZ, departed without a flight plan and was undetected on air traffic control radar. The last known GPS location was over the southeast region of Manicoré. An extensive search operation involving the Brazilian Air Force (FAB), civil police, military police, fire department, and sniffer dogs culminated in the discovery of the crash site on December 25. The dense and inaccessible terrain of the Amazon rainforest significantly impeded search efforts.

 

Kamaka Air Crash in Hawaii. On December 17, a Cessna 208B Grand Caravan, operated by Kamaka Air LLC, crashed near Daniel K Inouye International Airport in Honolulu, Hawaii. On a training flight, the plane lost control shortly after take-off, executing a sharp left bank before crashing into a building. Both pilots perished in the accident. The aircraft, operating as Kamaka Air Flight 689, departed from Honolulu International Airport around 3:15 p.m. local time, bound for Lanai Airport. Shortly after take-off, the plane lost altitude and crashed into a vacant building near the airport. Witnesses reported erratic flight behaviour before the crash, and the pilot’s last communication indicated the aircraft was “out of control.”  The two onboard individuals were identified as pilot-in-training Hiram DeFries, 22, and instructor pilot Preston Kaluhiwa.

 

Argentina Challenger Crash. Another fatal crash occurred on December 17 when a Bombardier BD-100-1A10 Challenger 300 crashed near San Fernando Airport in Argentina, killing both pilots, 35-year-old Agustín Orforte and 44-year-old Martín Fernández Loza. The aircraft was returning from Punta del Este, Uruguay, on a ferry flight with only the two pilots on board.  Upon landing at San Fernando Airport, the jet overran the runway, breached the airport perimeter fence, collided with nearby buildings, and caught fire. Eyewitnesses reported that the aircraft failed to decelerate effectively during landing.

 

Preliminary Lessons and Recommendations

 

Preliminary lessons from the recent air crashes suggest areas for improvement in aircraft safety, crew training, and regulatory oversight. However, these insights are based on initial assessments. Thorough investigations, which are underway, will provide more precise causes and detailed recommendations. The results of the inquiry will offer a clearer path forward for safety enhancements, reassuring the aviation community about the future of aviation safety.

 

Runway and the Operating Zone. A solid concrete structure within the runway safety area is a severe safety violation. Adhering to international safety standards is crucial, as the runway operating zone should be free of hard obstacles to allow aircraft to decelerate safely in overrun scenarios.  Implementing safety features such as Engineered Materials Arrestor Systems (EMAS) is crucial, but the maintenance of runways is equally important. Ensuring that runways are properly maintained and contaminant-free enhances braking effectiveness and reduces overrun risks. This safety measure cannot be overlooked and should be a priority for all aviation stakeholders.

 

Wildlife Hazard Management. The incidences of bird strikes near International Airports, attributed to their proximity to bird habitats, underscore the need for enhanced wildlife management strategies. Measures like sound cannons, lasers, warning lights, etc., can mitigate such risks.

 

Emergency Response Preparedness. The rapid escalation from landing difficulties to a catastrophic fire highlights the need for robust emergency response protocols at airports, including efficient coordination among firefighting units and medical teams to manage such crises effectively.

 

Timely Search and Rescue Operations. The delay in locating the crash site due to adverse weather highlights the need for robust search and rescue protocols that can operate effectively in challenging conditions. Investing in advanced tracking technologies and improving inter-agency coordination can enhance response times. Deploying adequate resources, including aerial surveillance, ground teams, and technology such as drones, is essential for effective search operations, especially in challenging terrains like dense rainforests.  Engaging local communities in emergency response efforts can be beneficial, as they often possess intimate knowledge of the terrain and can assist in search operations.

 

Flight Planning and Tracking. Operating without a filed flight plan can severely hinder search and rescue operations in an emergency. Filing a flight plan should be mandatory for all flights, regardless of distance or familiarity with the route. Equipping aircraft with real-time tracking devices can provide continuous position updates, enhance situational awareness and expedite location efforts if an aeroplane goes missing. Regular maintenance and testing of emergency locator transmitters (ELTs) is crucial to ensure they activate correctly during a crash, facilitating prompt search and rescue operations.

 

Weather Assessment and Decision-Making. Some of these incidents underscore the critical importance of thorough weather assessments before flight, especially in regions prone to rapid weather changes. Pilots must evaluate current and forecasted conditions to make informed go/no-go decisions. Operating in poor visibility necessitates strict compliance with IFR procedures. Pilots should be adequately trained and current in instrument flying to navigate safely under such conditions.

 

Airspace Management in Conflict Zones. Comprehensive risk assessments are necessary when planning flight paths over or near active conflict zones. Airlines must evaluate potential threats, including military activities, to ensure passenger safety. Enhanced communication is crucial, and real-time information sharing can help reroute flights from emerging threats. International aviation bodies may need to revisit policies to protect civilian aircraft from becoming inadvertent targets.

 

Aircraft Design and Redundancy. The simultaneous failure of multiple systems, including landing gear and possibly engine components, raises concerns about the aircraft’s design redundancies. A thorough review of safety features is warranted to ensure they can withstand multiple concurrent failures.

 

Aircraft Maintenance and Performance. Ensuring that aircraft are maintained in optimal condition is vital for safe operations. Adherence to maintenance schedules and promptly addressing any identified issues can prevent mechanical failures. Comprehensive pre-flight checks and adherence to maintenance schedules can prevent mechanical failures. Accurate calculations of aircraft performance, considering weight, balance, and environmental conditions, are essential to ensure safe take-off and climb capabilities.

 

Pilot Training and Proficiency. These crashes highlight the need for regular training in emergency procedures, including handling unexpected situations during critical phases of flight like take-off and landing. Pilots should be well-prepared to manage emergencies effectively to enhance survival outcomes. Regular simulation of emergency scenarios can better prepare pilots to handle unexpected situations during actual flights. Training should emphasise decision-making skills under pressure to improve pilots’ ability to manage in-flight emergencies.

 

Stabilised Approach and Landing. Ensuring the aircraft maintains a stable approach path, speed, and configuration is critical for a safe landing. Deviations should prompt a go-around decision. Pilots should assess landing performance by considering runway length, surface conditions, and aircraft weight to ensure adequate stopping distance. Pilots should be trained to execute go-arounds decisively when approach parameters are not met rather than attempting to salvage an unstable approach.

 

Flight Data Recording. Under the Civil Aviation Safety Authority regulations, some smaller aircraft are not required to have a black box installed. However, equipping even small aircraft with flight data recorders can provide valuable information in accident investigations and help prevent future occurrences.

 

Conclusion

 

These tragedies serve as a sombre reminder of the complexities and risks inherent in modern aviation. While the loss of life is deeply tragic, it highlights the urgent need for proactive safety measures. The challenges in aviation are multifaceted, encompassing factors such as weather-related decision-making, pilot proficiency, urban flight operations, aircraft maintenance, emergency response coordination, equipment standards, communications, airport safety protocols, and search-and-rescue operations. As investigations unfold, further insights are expected to guide policy changes and safety improvements to prevent future tragedies. Implementing these lessons is essential to strengthening the safety and security of international aviation, while continuous improvements in emergency preparedness will help mitigate risks and enhance overall safety.

 

Your valuable comments are most welcome.

 

1014
Default rating

Please give a thumbs up if you  like The Post?

 

Link to the article on the website:-

https://www.lifeofsoldiers.com/2025/01/10/deadly-fortnight-nine-air-crashes-several-lessons/

 

For regular updates, please register your email here:-

Subscribe

 

 

References and credits

To all the online sites and channels.

References:-

  1. Graham, J. D., & Aigner, M. E. (2024). The Jeju Air Crash: A Detailed Analysis of the Muan Airport Tragedy. International Journal of Aviation Safety, 42(1), 12-34.
  1. Kipling, T. (2024). The Christmas Day Azerbaijan Airlines Crash: An Investigation into Aircraft Performance and Weather Impact. Aviation Accident Quarterly, 68(3), 45-62.
  1. Simpson, M., & Harrington, J. (2023). Aviation Safety in the South Pacific: The Papua New Guinea Crash. Journal of Aviation and Aeronautics, 32(4), 90-102.
  1. Walker, R. (2023). Private Aviation Crashes in Brazil: A Case Study of the Galeazzi Family Tragedy. Air Safety Report, 19(2), 75-87.
  1. BBC News. (2023, December 28). Jeju Air Crash: At Least 170 Dead in South Korean Aviation Tragedy. BBC News.
  1. CNN Aviation. (2023, December 25). Azerbaijan Airlines Embraer Crash Near Aktau Airport. CNN.
  1. Reuters. (2023, December 22). Brazil Plane Crash Kills Ten Members of Prominent Family in Gramado. Reuters.
  1. Aviation Safety Network. (2023). Summary of the Kamaka Air Crash in Hawaii. Aviation Safety Network.
  1. International Civil Aviation Organization (ICAO). (2022). Global Aviation Safety Plan 2022-2025. ICAO.
  1. Shappell, S. A., & Wiegmann, D. A. (2017). Aviation Safety Programs: A Management Handbook. CRC Press.

Disclaimer:

Information and data included in the blog are for educational & non-commercial purposes only and have been carefully adapted, excerpted, or edited from reliable and accurate sources. All copyrighted material belongs to respective owners and is provided only for wider dissemination.

English हिंदी